FIX: Typo fix which messed with outputs
This commit is contained in:
parent
04cec15523
commit
552f4cd593
@ -21,11 +21,13 @@ class MyNeuralNetwork(torch.nn.Module):
|
|||||||
|
|
||||||
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
||||||
def get_word2vec(document):
|
def get_word2vec(document):
|
||||||
|
|
||||||
return np.mean([word2vec[token] for token in document if token in word2vec] or [np.zeros(300)], axis=0)
|
return np.mean([word2vec[token] for token in document if token in word2vec] or [np.zeros(300)], axis=0)
|
||||||
|
|
||||||
#Basic paths + reading from files
|
#Basic paths + reading from files
|
||||||
XtrainingData = pd.read_table('train/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
XtrainingData = pd.read_table('train/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
||||||
YtrainingData = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['label'])['label']
|
YtrainingData = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['label'])['label']
|
||||||
|
|
||||||
XtestData = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
XtestData = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
||||||
XdevData = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
XdevData = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
||||||
|
|
||||||
@ -42,43 +44,57 @@ XdevData = [get_word2vec(document) for document in XdevData]
|
|||||||
eph = 30
|
eph = 30
|
||||||
batches = 5
|
batches = 5
|
||||||
network = MyNeuralNetwork(300, 600, 1)
|
network = MyNeuralNetwork(300, 600, 1)
|
||||||
criterion = torch.nn.BCELoss()
|
crit = torch.nn.BCELoss()
|
||||||
optimizer = torch.optim.SGD(network.parameters(), lr=0.02)
|
opt = torch.optim.SGD(network.parameters(), lr=0.03)
|
||||||
|
|
||||||
|
########Accuracy for different parameters according to Geval###########
|
||||||
|
#0.7561 for 5 epochs and 5 batches
|
||||||
|
#0.7728 for 30 epochs and 5 batches
|
||||||
|
#0.7712 for 30 epochs and 15 batches
|
||||||
|
#######################################################################
|
||||||
#Model training according to source files from classes
|
#Model training according to source files from classes
|
||||||
for epoch in range(eph):
|
for epoch in range(eph):
|
||||||
network.train()
|
network.train()
|
||||||
|
|
||||||
for i in range(0, YtrainingData.shape[0], batches):
|
for i in range(0, YtrainingData.shape[0], batches):
|
||||||
x = XtrainingData[i :i + batches]
|
x = XtrainingData[i :i + batches]
|
||||||
x = torch.tensor(x)
|
x = torch.tensor(x)
|
||||||
y = YtrainingData[i :i + batches]
|
y = YtrainingData[i :i + batches]
|
||||||
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||||
|
|
||||||
outputs = network(x.float())
|
outcome = network(x.float())
|
||||||
loss = criterion(outputs, y)
|
loss = crit(outcome, y)
|
||||||
optimizer.zero_grad()
|
opt.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
opt.step()
|
||||||
|
|
||||||
#Basic evaluation
|
#Basic evaluation
|
||||||
YpredDev = []
|
|
||||||
YtestPred = []
|
YtestPred = []
|
||||||
|
YpredDev = []
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for i in range(0, len(XdevData), batches):
|
for i in range(0, len(XdevData), batches):
|
||||||
x = XdevData[i :i + batches]
|
x = XdevData[i :i + batches]
|
||||||
x = torch.tensor(x)
|
x = torch.tensor(x)
|
||||||
outputs = network(x.float())
|
outcome = network(x.float())
|
||||||
prediction = outputs > 0.5
|
predict = outcome > 0.5
|
||||||
YpredDev += prediction.tolist()
|
|
||||||
|
YpredDev += predict.tolist()
|
||||||
|
|
||||||
for i in range(0, len(XtestData), batches):
|
for i in range(0, len(XtestData), batches):
|
||||||
x = XtestData[i :i + batches]
|
x = XtestData[i :i + batches]
|
||||||
x = torch.tensor(x)
|
x = torch.tensor(x)
|
||||||
outputs = network(x.float())
|
outcome = network(x.float())
|
||||||
prediction = outputs > 0.5
|
predict = outcome > 0.5
|
||||||
YtestPred += prediction.tolist()
|
|
||||||
|
YtestPred += predict.tolist()
|
||||||
|
|
||||||
#Saving outputs
|
#Saving outputs
|
||||||
np.asarray(YpredDev, dtype=np.int32).tofile('./dev-0/out.tsv', sep='\n')
|
np.asarray(YpredDev, dtype=np.int32).tofile('./dev-0/out.tsv', sep='\n')
|
||||||
np.asarray(YtestPred, dtype=np.int32).tofile('./test-A/out.tsv', sep='\n')
|
np.asarray(YtestPred, dtype=np.int32).tofile('./test-A/out.tsv', sep='\n')
|
||||||
|
|
||||||
|
########Accuracy for different parameters according to Geval###########
|
||||||
|
#0.7561 for 5 epochs and 5 batches
|
||||||
|
#0.7728 for 30 epochs and 5 batches
|
||||||
|
#0.7712 for 30 epochs and 15 batches
|
||||||
|
#######################################################################
|
||||||
|
Loading…
Reference in New Issue
Block a user