101 lines
3.7 KiB
Python
101 lines
3.7 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import torch
|
|
from csv import QUOTE_NONE
|
|
from nltk.tokenize import word_tokenize
|
|
import gensim.downloader
|
|
|
|
#Based on source material from classes
|
|
class MyNeuralNetwork(torch.nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_classes):
|
|
super(MyNeuralNetwork, self).__init__()
|
|
self.fc1 = torch.nn.Linear(input_size, hidden_size)
|
|
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = torch.relu(x)
|
|
x = self.fc2(x)
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
word2vec = gensim.downloader.load('word2vec-google-news-300')
|
|
def get_word2vec(document):
|
|
|
|
return np.mean([word2vec[token] for token in document if token in word2vec] or [np.zeros(300)], axis=0)
|
|
|
|
#Basic paths + reading from files
|
|
XtrainingData = pd.read_table('train/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
|
YtrainingData = pd.read_table('train/expected.tsv', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['label'])['label']
|
|
|
|
XtestData = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
|
XdevData = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=QUOTE_NONE, names=['content', 'id'])
|
|
|
|
|
|
#Data filltering and preprocessing
|
|
XtrainingData = [word_tokenize(row) for row in XtrainingData['content'].str.lower()]
|
|
XtestData = [word_tokenize(row) for row in XtestData['content'].str.lower()]
|
|
XdevData = [word_tokenize(row) for row in XdevData['content'].str.lower()]
|
|
XtrainingData = [get_word2vec(document) for document in XtrainingData]
|
|
XtestData = [get_word2vec(document) for document in XtestData]
|
|
XdevData = [get_word2vec(document) for document in XdevData]
|
|
|
|
#Basic parameters for the model
|
|
eph = 30
|
|
batches = 5
|
|
network = MyNeuralNetwork(300, 600, 1)
|
|
crit = torch.nn.BCELoss()
|
|
opt = torch.optim.SGD(network.parameters(), lr=0.03)
|
|
|
|
########Accuracy for different parameters according to Geval###########
|
|
#0.7561 for 5 epochs and 5 batches
|
|
#0.7728 for 30 epochs and 5 batches
|
|
#0.7712 for 30 epochs and 15 batches
|
|
#######################################################################
|
|
#Model training according to source files from classes
|
|
for epoch in range(eph):
|
|
network.train()
|
|
|
|
for i in range(0, YtrainingData.shape[0], batches):
|
|
x = XtrainingData[i :i + batches]
|
|
x = torch.tensor(x)
|
|
y = YtrainingData[i :i + batches]
|
|
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
|
|
|
outcome = network(x.float())
|
|
loss = crit(outcome, y)
|
|
opt.zero_grad()
|
|
loss.backward()
|
|
opt.step()
|
|
|
|
#Basic evaluation
|
|
YtestPred = []
|
|
YpredDev = []
|
|
|
|
with torch.no_grad():
|
|
for i in range(0, len(XdevData), batches):
|
|
x = XdevData[i :i + batches]
|
|
x = torch.tensor(x)
|
|
outcome = network(x.float())
|
|
predict = outcome > 0.5
|
|
|
|
YpredDev += predict.tolist()
|
|
|
|
for i in range(0, len(XtestData), batches):
|
|
x = XtestData[i :i + batches]
|
|
x = torch.tensor(x)
|
|
outcome = network(x.float())
|
|
predict = outcome > 0.5
|
|
|
|
YtestPred += predict.tolist()
|
|
|
|
#Saving outputs
|
|
np.asarray(YpredDev, dtype=np.int32).tofile('./dev-0/out.tsv', sep='\n')
|
|
np.asarray(YtestPred, dtype=np.int32).tofile('./test-A/out.tsv', sep='\n')
|
|
|
|
########Accuracy for different parameters according to Geval###########
|
|
#0.7561 for 5 epochs and 5 batches
|
|
#0.7728 for 30 epochs and 5 batches
|
|
#0.7712 for 30 epochs and 15 batches
|
|
#######################################################################
|