2021-05-16 18:27:12 +02:00
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
2021-05-17 14:45:14 +02:00
|
|
|
from Modules import NLU
|
2021-05-16 18:27:12 +02:00
|
|
|
|
|
|
|
PATTERN = r'[^(]*'
|
|
|
|
|
2021-05-16 23:13:40 +02:00
|
|
|
# Algorytm sprawdzający
|
2021-05-16 18:27:12 +02:00
|
|
|
|
|
|
|
rows = 0
|
|
|
|
hits = 0
|
|
|
|
|
2021-05-17 14:45:14 +02:00
|
|
|
nlu = NLU()
|
|
|
|
|
2021-05-16 18:27:12 +02:00
|
|
|
for file_name in os.listdir('data'):
|
|
|
|
df = pd.read_csv(f'data/{file_name}', sep='\t', names=['user', 'sentence', 'acts'])
|
|
|
|
df = df[df.user == 'user']
|
|
|
|
data = np.array(df)
|
|
|
|
|
|
|
|
for row in data:
|
|
|
|
rows += 1
|
|
|
|
sentence = row[1]
|
2021-05-17 14:45:14 +02:00
|
|
|
user_acts = row[2].split('&')
|
|
|
|
nlu_acts = nlu.get_dialog_act(sentence)
|
|
|
|
for nlu_act in nlu_acts:
|
|
|
|
for user_act in user_acts:
|
|
|
|
user_act = re.search(PATTERN, user_act).group()
|
|
|
|
if user_act == nlu_act:
|
|
|
|
hits += 1
|
2021-05-16 18:27:12 +02:00
|
|
|
print(f"Accuracy: {(hits / rows)*100}")
|
2021-05-17 14:45:14 +02:00
|
|
|
# Dokładność 38.5%
|