#Natural Language Understanding class NLU: #Text analysys def __init__(self, acts, arguments): self.acts = acts self.arguments = arguments def analyze(self, text): #Turn text into frame #return vector for further use act = "(greetings()&request(name))" vector = [[0],[1,0]] return vector #Dialogue policy class DP: #Module decide what act takes next def __init__(self, acts, arguments): self.acts = acts self.arguments = arguments def tacticChoice(self, frame_list): act_vector = [0, 0] return act_vector #Dialogue State Tracker class DST: #Contain informations about state of the dialogue and data taken from user def __init__(self, acts, arguments): self.acts = acts self.arguments = arguments self.frame_list= [] #store new act into frame def store(self, frame): self.frame_list.append(frame) def transfer(self): return self.frame_list #Natural Language Generator class NLG: def __init__(self, acts, arguments): self.acts = acts self.arguments = arguments def vectorToText(self, act_vector): if(act_vector == [0, 0]): return "Cześć, mam na imię Mateusz" return "Nie rozumiem Cię" class Run: def __init__(self): self.acts={ 0: "greetings", 1: "request", } self.arguments={ 0: "name" } self.nlu = NLU(self.acts, self.arguments) self.dp = DP(self.acts, self.arguments) self.nlg = NLG(self.acts, self.arguments) self.dst = DST(self.acts, self.arguments) def process(self, command): act = self.nlu.analyze(command) self.dst.store(act) basic_act = self.dp.tacticChoice(self.dst.transfer()) return self.nlg.vectorToText(basic_act) run = Run() while(1): message = input("Napisz coś: ") print(run.process(message))