2021-05-02 22:01:32 +02:00
|
|
|
import pandas as pd
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.keras import layers
|
|
|
|
|
|
|
|
X_train = pd.read_csv('train.csv')
|
|
|
|
X_test = pd.read_csv('test.csv')
|
2021-05-14 21:52:14 +02:00
|
|
|
X_valid = pd.read_csv('valid.csv')
|
2021-05-02 22:01:32 +02:00
|
|
|
|
|
|
|
Y_train = X_train.pop('stabf')
|
2021-05-14 21:52:14 +02:00
|
|
|
Y_train = pd.get_dummies(Y_train)
|
2021-05-02 22:01:32 +02:00
|
|
|
|
2021-05-14 21:52:14 +02:00
|
|
|
Y_test = X_test.pop('stabf')
|
|
|
|
Y_test = pd.get_dummies(Y_test)
|
2021-05-02 22:01:32 +02:00
|
|
|
|
2021-05-14 21:52:14 +02:00
|
|
|
Y_valid = X_valid.pop('stabf')
|
|
|
|
Y_valid = pd.get_dummies(Y_valid)
|
2021-05-02 22:01:32 +02:00
|
|
|
|
|
|
|
model = tf.keras.Sequential([
|
|
|
|
layers.Input(shape=(12,)),
|
|
|
|
layers.Dense(32),
|
|
|
|
layers.Dense(16),
|
2021-05-14 21:52:14 +02:00
|
|
|
layers.Dense(2, activation='softmax')
|
|
|
|
])
|
2021-05-02 22:01:32 +02:00
|
|
|
|
|
|
|
model.compile(
|
|
|
|
loss=tf.losses.BinaryCrossentropy(),
|
|
|
|
optimizer=tf.optimizers.Adam(),
|
|
|
|
metrics=[tf.keras.metrics.BinaryAccuracy()])
|
|
|
|
|
2021-05-14 21:52:14 +02:00
|
|
|
|
2021-05-02 22:01:32 +02:00
|
|
|
history = model.fit(tf.convert_to_tensor(X_train, np.float32),
|
2021-05-14 21:52:14 +02:00
|
|
|
Y_train, epochs=2, validation_data=(X_valid, Y_valid))
|
|
|
|
|
|
|
|
model.save('grid-stability-dense.h5')
|
2021-05-02 22:01:32 +02:00
|
|
|
|