train into eval
This commit is contained in:
parent
8324f60cd4
commit
50d2a3b889
@ -1,17 +1,50 @@
|
||||
import csv
|
||||
import pandas as pd
|
||||
from tensorflow.keras.models import load_model
|
||||
import seaborn as sns
|
||||
import sys
|
||||
import tensorflow
|
||||
from tensorflow.keras import layers
|
||||
# from tensorflow.keras.models import load_model
|
||||
|
||||
|
||||
# X_test = pd.read_csv('test.csv')
|
||||
#
|
||||
# Y_test = X_test.pop('stabf')
|
||||
# Y_test = pd.get_dummies(Y_test)
|
||||
#
|
||||
# model = load_model('grid-stability-dense.h5')
|
||||
X_train = pd.read_csv('train.csv')
|
||||
X_test = pd.read_csv('test.csv')
|
||||
X_valid = pd.read_csv('valid.csv')
|
||||
|
||||
Y_train = X_train.pop('stabf')
|
||||
Y_train = pd.get_dummies(Y_train)
|
||||
|
||||
Y_test = X_test.pop('stabf')
|
||||
Y_test = pd.get_dummies(Y_test)
|
||||
|
||||
model = load_model('grid-stability-dense.h5')
|
||||
Y_valid = X_valid.pop('stabf')
|
||||
Y_valid = pd.get_dummies(Y_valid)
|
||||
|
||||
model = tensorflow.keras.Sequential([
|
||||
layers.Input(shape=(12,)),
|
||||
layers.Dense(32),
|
||||
layers.Dense(16),
|
||||
layers.Dense(2, activation='softmax')
|
||||
])
|
||||
|
||||
model.compile(
|
||||
loss=tensorflow.keras.losses.BinaryCrossentropy(),
|
||||
optimizer=tensorflow.keras.optimizers.Adam(lr=float(sys.argv[1])),
|
||||
metrics=[tensorflow.keras.metrics.BinaryAccuracy()])
|
||||
|
||||
history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid))
|
||||
results = model.evaluate(X_test, Y_test, batch_size=64)
|
||||
|
||||
with open('eval.csv', 'a', newline='') as fp:
|
||||
wr = csv.writer(fp, dialect='excel')
|
||||
wr.writerow(results)
|
||||
|
||||
sns.set_theme(style="darkgrid")
|
||||
df = pd.read_csv('eval.csv')
|
||||
sns.lineplot(x='build', y='score', data=df.iloc[1])
|
@ -1,4 +1,5 @@
|
||||
numpy~=1.19.2
|
||||
pandas
|
||||
tensorflow
|
||||
keras==2.4.3
|
||||
keras
|
||||
seaborn
|
||||
|
@ -16,18 +16,12 @@ Y_test = pd.get_dummies(Y_test)
|
||||
Y_valid = X_valid.pop('stabf')
|
||||
Y_valid = pd.get_dummies(Y_valid)
|
||||
|
||||
# model = tensorflow.keras.Sequential([
|
||||
# layers.Input(shape=(12,)),
|
||||
# layers.Dense(32),
|
||||
# layers.Dense(16),
|
||||
# layers.Dense(2, activation='softmax')
|
||||
# ])
|
||||
|
||||
model = tensorflow.keras.Sequential()
|
||||
model.add(layers.Input(shape=(12,)))
|
||||
model.add(layers.Dense(32))
|
||||
model.add(layers.Dense(16))
|
||||
model.add(layers.Dense(2, activation='softmax'))
|
||||
model = tensorflow.keras.Sequential([
|
||||
layers.Input(shape=(12,)),
|
||||
layers.Dense(32),
|
||||
layers.Dense(16),
|
||||
layers.Dense(2, activation='softmax')
|
||||
])
|
||||
|
||||
model.compile(
|
||||
loss=tensorflow.keras.losses.BinaryCrossentropy(),
|
||||
|
Loading…
Reference in New Issue
Block a user