train into eval
This commit is contained in:
parent
8324f60cd4
commit
50d2a3b889
@ -1,17 +1,50 @@
|
|||||||
import csv
|
import csv
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from tensorflow.keras.models import load_model
|
import seaborn as sns
|
||||||
|
import sys
|
||||||
|
import tensorflow
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
# from tensorflow.keras.models import load_model
|
||||||
|
|
||||||
|
|
||||||
|
# X_test = pd.read_csv('test.csv')
|
||||||
|
#
|
||||||
|
# Y_test = X_test.pop('stabf')
|
||||||
|
# Y_test = pd.get_dummies(Y_test)
|
||||||
|
#
|
||||||
|
# model = load_model('grid-stability-dense.h5')
|
||||||
|
X_train = pd.read_csv('train.csv')
|
||||||
X_test = pd.read_csv('test.csv')
|
X_test = pd.read_csv('test.csv')
|
||||||
|
X_valid = pd.read_csv('valid.csv')
|
||||||
|
|
||||||
|
Y_train = X_train.pop('stabf')
|
||||||
|
Y_train = pd.get_dummies(Y_train)
|
||||||
|
|
||||||
Y_test = X_test.pop('stabf')
|
Y_test = X_test.pop('stabf')
|
||||||
Y_test = pd.get_dummies(Y_test)
|
Y_test = pd.get_dummies(Y_test)
|
||||||
|
|
||||||
model = load_model('grid-stability-dense.h5')
|
Y_valid = X_valid.pop('stabf')
|
||||||
|
Y_valid = pd.get_dummies(Y_valid)
|
||||||
|
|
||||||
|
model = tensorflow.keras.Sequential([
|
||||||
|
layers.Input(shape=(12,)),
|
||||||
|
layers.Dense(32),
|
||||||
|
layers.Dense(16),
|
||||||
|
layers.Dense(2, activation='softmax')
|
||||||
|
])
|
||||||
|
|
||||||
|
model.compile(
|
||||||
|
loss=tensorflow.keras.losses.BinaryCrossentropy(),
|
||||||
|
optimizer=tensorflow.keras.optimizers.Adam(lr=float(sys.argv[1])),
|
||||||
|
metrics=[tensorflow.keras.metrics.BinaryAccuracy()])
|
||||||
|
|
||||||
|
history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid))
|
||||||
results = model.evaluate(X_test, Y_test, batch_size=64)
|
results = model.evaluate(X_test, Y_test, batch_size=64)
|
||||||
|
|
||||||
with open('eval.csv', 'a', newline='') as fp:
|
with open('eval.csv', 'a', newline='') as fp:
|
||||||
wr = csv.writer(fp, dialect='excel')
|
wr = csv.writer(fp, dialect='excel')
|
||||||
wr.writerow(results)
|
wr.writerow(results)
|
||||||
|
|
||||||
|
sns.set_theme(style="darkgrid")
|
||||||
|
df = pd.read_csv('eval.csv')
|
||||||
|
sns.lineplot(x='build', y='score', data=df.iloc[1])
|
@ -1,4 +1,5 @@
|
|||||||
numpy~=1.19.2
|
numpy~=1.19.2
|
||||||
pandas
|
pandas
|
||||||
tensorflow
|
tensorflow
|
||||||
keras==2.4.3
|
keras
|
||||||
|
seaborn
|
||||||
|
@ -16,18 +16,12 @@ Y_test = pd.get_dummies(Y_test)
|
|||||||
Y_valid = X_valid.pop('stabf')
|
Y_valid = X_valid.pop('stabf')
|
||||||
Y_valid = pd.get_dummies(Y_valid)
|
Y_valid = pd.get_dummies(Y_valid)
|
||||||
|
|
||||||
# model = tensorflow.keras.Sequential([
|
model = tensorflow.keras.Sequential([
|
||||||
# layers.Input(shape=(12,)),
|
layers.Input(shape=(12,)),
|
||||||
# layers.Dense(32),
|
layers.Dense(32),
|
||||||
# layers.Dense(16),
|
layers.Dense(16),
|
||||||
# layers.Dense(2, activation='softmax')
|
layers.Dense(2, activation='softmax')
|
||||||
# ])
|
])
|
||||||
|
|
||||||
model = tensorflow.keras.Sequential()
|
|
||||||
model.add(layers.Input(shape=(12,)))
|
|
||||||
model.add(layers.Dense(32))
|
|
||||||
model.add(layers.Dense(16))
|
|
||||||
model.add(layers.Dense(2, activation='softmax'))
|
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
loss=tensorflow.keras.losses.BinaryCrossentropy(),
|
loss=tensorflow.keras.losses.BinaryCrossentropy(),
|
||||||
|
Loading…
Reference in New Issue
Block a user