train into eval

This commit is contained in:
jakubknczny 2021-05-15 22:30:25 +02:00
parent 8324f60cd4
commit 50d2a3b889
3 changed files with 43 additions and 15 deletions

View File

@ -1,17 +1,50 @@
import csv import csv
import pandas as pd import pandas as pd
from tensorflow.keras.models import load_model import seaborn as sns
import sys
import tensorflow
from tensorflow.keras import layers
# from tensorflow.keras.models import load_model
# X_test = pd.read_csv('test.csv')
#
# Y_test = X_test.pop('stabf')
# Y_test = pd.get_dummies(Y_test)
#
# model = load_model('grid-stability-dense.h5')
X_train = pd.read_csv('train.csv')
X_test = pd.read_csv('test.csv') X_test = pd.read_csv('test.csv')
X_valid = pd.read_csv('valid.csv')
Y_train = X_train.pop('stabf')
Y_train = pd.get_dummies(Y_train)
Y_test = X_test.pop('stabf') Y_test = X_test.pop('stabf')
Y_test = pd.get_dummies(Y_test) Y_test = pd.get_dummies(Y_test)
model = load_model('grid-stability-dense.h5') Y_valid = X_valid.pop('stabf')
Y_valid = pd.get_dummies(Y_valid)
model = tensorflow.keras.Sequential([
layers.Input(shape=(12,)),
layers.Dense(32),
layers.Dense(16),
layers.Dense(2, activation='softmax')
])
model.compile(
loss=tensorflow.keras.losses.BinaryCrossentropy(),
optimizer=tensorflow.keras.optimizers.Adam(lr=float(sys.argv[1])),
metrics=[tensorflow.keras.metrics.BinaryAccuracy()])
history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid))
results = model.evaluate(X_test, Y_test, batch_size=64) results = model.evaluate(X_test, Y_test, batch_size=64)
with open('eval.csv', 'a', newline='') as fp: with open('eval.csv', 'a', newline='') as fp:
wr = csv.writer(fp, dialect='excel') wr = csv.writer(fp, dialect='excel')
wr.writerow(results) wr.writerow(results)
sns.set_theme(style="darkgrid")
df = pd.read_csv('eval.csv')
sns.lineplot(x='build', y='score', data=df.iloc[1])

View File

@ -1,4 +1,5 @@
numpy~=1.19.2 numpy~=1.19.2
pandas pandas
tensorflow tensorflow
keras==2.4.3 keras
seaborn

View File

@ -16,18 +16,12 @@ Y_test = pd.get_dummies(Y_test)
Y_valid = X_valid.pop('stabf') Y_valid = X_valid.pop('stabf')
Y_valid = pd.get_dummies(Y_valid) Y_valid = pd.get_dummies(Y_valid)
# model = tensorflow.keras.Sequential([ model = tensorflow.keras.Sequential([
# layers.Input(shape=(12,)), layers.Input(shape=(12,)),
# layers.Dense(32), layers.Dense(32),
# layers.Dense(16), layers.Dense(16),
# layers.Dense(2, activation='softmax') layers.Dense(2, activation='softmax')
# ]) ])
model = tensorflow.keras.Sequential()
model.add(layers.Input(shape=(12,)))
model.add(layers.Dense(32))
model.add(layers.Dense(16))
model.add(layers.Dense(2, activation='softmax'))
model.compile( model.compile(
loss=tensorflow.keras.losses.BinaryCrossentropy(), loss=tensorflow.keras.losses.BinaryCrossentropy(),