add training
This commit is contained in:
parent
448e9612ea
commit
6467019d8d
@ -18,6 +18,8 @@ The container downloads the dataset and installs software needed,
|
|||||||
then trains and evaluates model on the dataset.
|
then trains and evaluates model on the dataset.
|
||||||
Loss and accuracy are saved to test_eval.txt file.
|
Loss and accuracy are saved to test_eval.txt file.
|
||||||
|
|
||||||
|
### Zadanie 6
|
||||||
|
added create, train, eval directories in lab5
|
||||||
|
|
||||||
|
|
||||||
ium01.ipynb is a notebook used to develop previously mentioned scripts.
|
ium01.ipynb is a notebook used to develop previously mentioned scripts.
|
||||||
|
|
||||||
|
49
lab5/train/Jenkinsfile
vendored
Normal file
49
lab5/train/Jenkinsfile
vendored
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
pipeline {
|
||||||
|
agent none
|
||||||
|
stages {
|
||||||
|
stage('copy files') {
|
||||||
|
agent any
|
||||||
|
steps {
|
||||||
|
sh '''
|
||||||
|
cp ./lab5/train/script.sh .
|
||||||
|
cp ./lab5/train/train.py .
|
||||||
|
cp ./lab5/train/requirements.txt .
|
||||||
|
'''
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('docker') {
|
||||||
|
agent {
|
||||||
|
dockerfile true
|
||||||
|
parameters {
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying artifacts',
|
||||||
|
name: 'BUILD_SELECTOR')
|
||||||
|
|
||||||
|
string(name: 'LEARNING_RATE', defaultValue: '0.0003', description: 'learning rate')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stages {
|
||||||
|
stage('copyArtifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434684-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('ls') {
|
||||||
|
steps {
|
||||||
|
sh '''
|
||||||
|
chmod +x script.sh
|
||||||
|
./script.sh
|
||||||
|
ls -lah
|
||||||
|
'''
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('archive artifact') {
|
||||||
|
steps {
|
||||||
|
archiveArtifacts 'grid-stability-dense.h5'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -1,3 +1,3 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
python3 train.py
|
python3 train.py "$1"
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import sys
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.keras import layers
|
from tensorflow.keras import layers
|
||||||
|
|
||||||
@ -24,12 +26,11 @@ model = tf.keras.Sequential([
|
|||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
loss=tf.losses.BinaryCrossentropy(),
|
loss=tf.losses.BinaryCrossentropy(),
|
||||||
optimizer=tf.optimizers.Adam(),
|
optimizer=tf.optimizers.Adam(lr=float(sys.argv[1])),
|
||||||
metrics=[tf.keras.metrics.BinaryAccuracy()])
|
metrics=[tf.keras.metrics.BinaryAccuracy()])
|
||||||
|
|
||||||
|
|
||||||
history = model.fit(tf.convert_to_tensor(X_train, np.float32),
|
history = model.fit(tf.convert_to_tensor(X_train, np.float32),
|
||||||
Y_train, epochs=2, validation_data=(X_valid, Y_valid))
|
Y_train, epochs=2, validation_data=(X_valid, Y_valid))
|
||||||
|
|
||||||
model.save('grid-stability-dense.h5')
|
model.save('grid-stability-dense.h5')
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user