add training
This commit is contained in:
parent
448e9612ea
commit
6467019d8d
@ -18,6 +18,8 @@ The container downloads the dataset and installs software needed,
|
||||
then trains and evaluates model on the dataset.
|
||||
Loss and accuracy are saved to test_eval.txt file.
|
||||
|
||||
### Zadanie 6
|
||||
added create, train, eval directories in lab5
|
||||
|
||||
|
||||
ium01.ipynb is a notebook used to develop previously mentioned scripts.
|
||||
|
||||
|
49
lab5/train/Jenkinsfile
vendored
Normal file
49
lab5/train/Jenkinsfile
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
pipeline {
|
||||
agent none
|
||||
stages {
|
||||
stage('copy files') {
|
||||
agent any
|
||||
steps {
|
||||
sh '''
|
||||
cp ./lab5/train/script.sh .
|
||||
cp ./lab5/train/train.py .
|
||||
cp ./lab5/train/requirements.txt .
|
||||
'''
|
||||
}
|
||||
}
|
||||
stage('docker') {
|
||||
agent {
|
||||
dockerfile true
|
||||
parameters {
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'BUILD_SELECTOR')
|
||||
|
||||
string(name: 'LEARNING_RATE', defaultValue: '0.0003', description: 'learning rate')
|
||||
}
|
||||
}
|
||||
stages {
|
||||
stage('copyArtifacts') {
|
||||
steps {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434684-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
stage('ls') {
|
||||
steps {
|
||||
sh '''
|
||||
chmod +x script.sh
|
||||
./script.sh
|
||||
ls -lah
|
||||
'''
|
||||
}
|
||||
}
|
||||
stage('archive artifact') {
|
||||
steps {
|
||||
archiveArtifacts 'grid-stability-dense.h5'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,3 +1,3 @@
|
||||
#!/bin/bash
|
||||
|
||||
python3 train.py
|
||||
python3 train.py "$1"
|
||||
|
@ -1,4 +1,6 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import sys
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers
|
||||
|
||||
@ -24,7 +26,7 @@ model = tf.keras.Sequential([
|
||||
|
||||
model.compile(
|
||||
loss=tf.losses.BinaryCrossentropy(),
|
||||
optimizer=tf.optimizers.Adam(),
|
||||
optimizer=tf.optimizers.Adam(lr=float(sys.argv[1])),
|
||||
metrics=[tf.keras.metrics.BinaryAccuracy()])
|
||||
|
||||
|
||||
@ -32,4 +34,3 @@ history = model.fit(tf.convert_to_tensor(X_train, np.float32),
|
||||
Y_train, epochs=2, validation_data=(X_valid, Y_valid))
|
||||
|
||||
model.save('grid-stability-dense.h5')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user