add training

This commit is contained in:
jakubknczny 2021-05-15 17:34:13 +02:00
parent 448e9612ea
commit 6467019d8d
4 changed files with 57 additions and 5 deletions

View File

@ -18,6 +18,8 @@ The container downloads the dataset and installs software needed,
then trains and evaluates model on the dataset.
Loss and accuracy are saved to test_eval.txt file.
### Zadanie 6
added create, train, eval directories in lab5
ium01.ipynb is a notebook used to develop previously mentioned scripts.

49
lab5/train/Jenkinsfile vendored Normal file
View File

@ -0,0 +1,49 @@
pipeline {
agent none
stages {
stage('copy files') {
agent any
steps {
sh '''
cp ./lab5/train/script.sh .
cp ./lab5/train/train.py .
cp ./lab5/train/requirements.txt .
'''
}
}
stage('docker') {
agent {
dockerfile true
parameters {
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR')
string(name: 'LEARNING_RATE', defaultValue: '0.0003', description: 'learning rate')
}
}
stages {
stage('copyArtifacts') {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's434684-create-dataset', selector: buildParameter('BUILD_SELECTOR')
}
}
stage('ls') {
steps {
sh '''
chmod +x script.sh
./script.sh
ls -lah
'''
}
}
stage('archive artifact') {
steps {
archiveArtifacts 'grid-stability-dense.h5'
}
}
}
}
}
}

View File

@ -1,3 +1,3 @@
#!/bin/bash
python3 train.py
python3 train.py "$1"

View File

@ -1,4 +1,6 @@
import numpy as np
import pandas as pd
import sys
import tensorflow as tf
from tensorflow.keras import layers
@ -24,7 +26,7 @@ model = tf.keras.Sequential([
model.compile(
loss=tf.losses.BinaryCrossentropy(),
optimizer=tf.optimizers.Adam(),
optimizer=tf.optimizers.Adam(lr=float(sys.argv[1])),
metrics=[tf.keras.metrics.BinaryAccuracy()])
@ -32,4 +34,3 @@ history = model.fit(tf.convert_to_tensor(X_train, np.float32),
Y_train, epochs=2, validation_data=(X_valid, Y_valid))
model.save('grid-stability-dense.h5')