import pandas as pd import sys import tensorflow from tensorflow.keras import layers X_train = pd.read_csv('train.csv') X_test = pd.read_csv('test.csv') X_valid = pd.read_csv('valid.csv') Y_train = X_train.pop('stabf') Y_train = pd.get_dummies(Y_train) Y_test = X_test.pop('stabf') Y_test = pd.get_dummies(Y_test) Y_valid = X_valid.pop('stabf') Y_valid = pd.get_dummies(Y_valid) # model = tensorflow.keras.Sequential([ # layers.Input(shape=(12,)), # layers.Dense(32), # layers.Dense(16), # layers.Dense(2, activation='softmax') # ]) model = tensorflow.keras.Sequential() model.add(layers.Input(shape=(12,))) model.add(layers.Dense(32)) model.add(layers.Dense(16)) model.add(layers.Dense(2, activation='softmax')) model.compile( loss=tensorflow.keras.losses.BinaryCrossentropy(), optimizer=tensorflow.keras.optimizers.Adam(lr=float(sys.argv[1])), metrics=[tensorflow.keras.metrics.BinaryAccuracy()]) history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid)) model.save('grid-stability-dense.h5')