import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers def onezero(label): return 0 if label == 'unstable' else 1 X_train = pd.read_csv('train.csv') X_test = pd.read_csv('test.csv') Y_train = X_train.pop('stabf') Y_test = X_test.pop('stabf') Y_train_one_zero = [onezero(x) for x in Y_train] Y_train_onehot = np.eye(2)[Y_train_one_zero] Y_test_one_zero = [onezero(x) for x in Y_test] Y_test_onehot = np.eye(2)[Y_test_one_zero] model = tf.keras.Sequential([ layers.Input(shape=(12,)), layers.Dense(32), layers.Dense(16), layers.Dense(2, activation='softmax')]) model.compile( loss=tf.losses.BinaryCrossentropy(), optimizer=tf.optimizers.Adam(), metrics=[tf.keras.metrics.BinaryAccuracy()]) history = model.fit(tf.convert_to_tensor(X_train, np.float32), Y_train_onehot, epochs=5) model.save('grid_stability.h5')