import csv import pandas as pd import seaborn as sns import sys import tensorflow from tensorflow.keras import layers # from tensorflow.keras.models import load_model # X_test = pd.read_csv('test.csv') # # Y_test = X_test.pop('stabf') # Y_test = pd.get_dummies(Y_test) # # model = load_model('grid-stability-dense.h5') X_train = pd.read_csv('train.csv') X_test = pd.read_csv('test.csv') X_valid = pd.read_csv('valid.csv') Y_train = X_train.pop('stabf') Y_train = pd.get_dummies(Y_train) Y_test = X_test.pop('stabf') Y_test = pd.get_dummies(Y_test) Y_valid = X_valid.pop('stabf') Y_valid = pd.get_dummies(Y_valid) model = tensorflow.keras.Sequential([ layers.Input(shape=(12,)), layers.Dense(32), layers.Dense(16), layers.Dense(2, activation='softmax') ]) model.compile( loss=tensorflow.keras.losses.BinaryCrossentropy(), optimizer=tensorflow.keras.optimizers.Adam(), metrics=[tensorflow.keras.metrics.BinaryAccuracy()]) history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid)) results = model.evaluate(X_test, Y_test, batch_size=64) with open('eval.csv', 'a', newline='') as fp: wr = csv.writer(fp, dialect='excel') wr.writerow(results)