ium_470607/lab1/python_script.py

38 lines
1.1 KiB
Python

import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
df = pd.read_csv('smart_grid_stability_augmented.csv')
scaler = preprocessing.StandardScaler().fit(df.iloc[:, 0:-1])
df_norm_array = scaler.transform(df.iloc[:, 0:-1])
df_norm = pd.DataFrame(data=df_norm_array,
columns=df.columns[:-1])
df_norm['stabf'] = df['stabf']
train, testAndValid = train_test_split(
df_norm,
test_size=0.2,
random_state=42,
stratify=df_norm['stabf'])
test, valid = train_test_split(
testAndValid,
test_size=0.5,
random_state=42,
stratify=testAndValid['stabf'])
def namestr(obj, namespace):
return [name for name in namespace if namespace[name] is obj]
dataset = df_norm
for x in [dataset, train, test, valid]:
print([q for q in namestr(x, globals()) if len(q) == max([len(w) for w in namestr(x, globals())])][-1])
print("size:", len(x))
print(x.describe(include='all'))
print("class distribution", x.value_counts('stabf'))
print('===============================================================')