add print in inject

This commit is contained in:
Jakub Konieczny 2022-01-18 10:15:54 +00:00
parent b7c17fbf7b
commit f9ad7efe63
3 changed files with 172 additions and 0 deletions

View File

@ -0,0 +1,130 @@
import spacy
import copy
import pandas as pd
import rapidfuzz
from rapidfuzz.fuzz import partial_ratio
import time
from rapidfuzz.utils import default_process
import sys
spacy.require_gpu()
spacy_nlp_en = spacy.load('en_core_web_sm')
spacy_nlp_pl = spacy.load("pl_core_news_sm")
def read_arguments():
try:
corpus_path, glossary_path = sys.argv
return corpus_path, glossary_path
except:
print("ERROR: Wrong argument amount.")
sys.exit(1)
glossary = pd.read_csv('mt-summit-corpora/glossary.tsv', sep='\t', header=None, names=['source', 'result'])
source_lemmatized = []
for word in glossary['source']:
temp = []
for token in spacy_nlp_en(word):
temp.append(token.lemma_)
source_lemmatized.append(' '.join(temp).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
result_lemmatized = []
for word in glossary['result']:
temp = []
for token in spacy_nlp_pl(word):
temp.append(token.lemma_)
result_lemmatized.append(' '.join(temp).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
glossary['source_lem'] = source_lemmatized
glossary['result_lem'] = result_lemmatized
glossary = glossary[['source', 'source_lem', 'result', 'result_lem']]
glossary.to_csv('kompendium_lem.tsv', sep='\t')
corpus_path = 'mt-summit-corpora/train/'
skip_chars = ''',./!?'''
with open(corpus_path + 'in.tsv', 'r') as file:
file_lemmatized = []
for line in file:
if len(file_lemmatized) % 10000 == 0:
print(len(file_lemmatized), end='\r')
temp = []
for token in spacy_nlp_en(line):
temp.append(token.lemma_)
file_lemmatized.append(' '.join([x for x in temp if x not in skip_chars]).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
with open(corpus_path + 'expected.tsv', 'r') as file:
file_pl_lemmatized = []
for line in file:
if len(file_pl_lemmatized) % 10000 == 0:
print(len(file_lemmatized), end='\r')
temp = []
for token in spacy_nlp_pl(line):
temp.append(token.lemma_)
file_pl_lemmatized.append(' '.join([x for x in temp if x not in skip_chars]).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
THRESHOLD = 88
def is_injectable(sentence_pl, sequence):
sen = sentence_pl.split()
window_size = len(sequence.split())
maxx = 0
for i in range(len(sen) - window_size):
current = rapidfuzz.fuzz.partial_ratio(' '.join(sen[i:i + window_size]), sequence)
if current > maxx:
maxx = current
return maxx
def inject(sentence, sequence):
sen = sentence.split()
window_size = len(sequence.split())
maxx = 0
maxxi = 0
for i in range(len(sen) - window_size):
current = rapidfuzz.fuzz.partial_ratio(' '.join(sen[i:i + window_size]), sequence)
if current > maxx:
maxx = current
maxxi = i
return ' '.join(sen[:maxxi + window_size]) + ' ' \
+ glossary.loc[lambda df: df['source_lem'] == sequence]['result'].astype(str).values.flatten() \
+ ' ' + ' '.join(sen[maxxi + window_size:])
glossary = pd.read_csv('../kompendium_lem_cleaned.tsv', sep='\t', header=0, index_col=0)
glossary['source_lem'] = [default_process(x) for x in glossary['source_lem']]
start_time = time.time_ns()
en = []
translation_line_counts = []
for line, line_pl in zip(file_lemmatized, file_pl_lemmatized):
if len(translation_line_counts) % 50000 == 0:
print(str(len(translation_line_counts)) + '/' + str(len(file_lemmatized), end='\r'))
line = default_process(line)
line_pl = default_process(line_pl)
matchez = rapidfuzz.process.extract(query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)
translation_line_counts.append(len(matchez))
for match in matchez:
# if is_injectable(line_pl, match[0]):
en.append(inject(line, match[0])[0])
stop = time.time_ns()
timex = (stop - start_time) / 1000000000
print(timex)
tlcs = copy.deepcopy(translation_line_counts)
translations = pd.read_csv(corpus_path + 'expected.tsv', sep='\t', header=None, names=['text'])
with open(corpus_path + 'extected.tsv.injected.crossvalidated.pl', 'w') as file_pl:
for line, translation_line_ct in zip(translations, tlcs):
for i in range(translation_line_ct):
file_pl.write(line)
with open(corpus_path + 'in.tsv.injected.crossvalidated.en', 'w') as file_en:
for e in en:
file_en.write(e + '\n')

View File

@ -0,0 +1,30 @@
first iteration:
./marian/build/marian --model mt.npz \
--type transformer --overwrite \
--train-sets mt-summit-corpora/mt-summit-corpora/dev/dev.en \
mt-summit-corpora/mt-summit-corpora/dev/dev.pl \
--disp-freq 1000 \
--save-freq 1000 \
--optimizer adam \
--lr-report
next iterations:
./marian/build/marian --model mt.npz \
--type transformer --overwrite \
--train-sets mt-summit-corpora/mt-summit-corpora/dev/dev.en \
mt-summit-corpora/mt-summit-corpora/dev/dev.pl \
--disp-freq 1000 \
--save-freq 1000 \
--optimizer adam \
--lr-report \
--pretrained-model mt.npz
./marian/build/marian --model mt.npz \
--type transformer --overwrite \
--train-sets mt-summit-corpora/mt-summit-corpora/train/train.en \
mt-summit-corpora/mt-summit-corpora/train/train.pl \
--disp-freq 1000 \
--save-freq 10000 \
--optimizer adam \
--lr-report \
--pretrained-model mt.npz

View File

@ -0,0 +1,12 @@
#!/bin.bash
apt install python3-pip
apt install python3-virtualenv
virtualenv -p python3.8 gpu
source gpu/bin/activate
pip install pandas ipython
pip install spacy[cuda114]
python -m spacy download en_core_web_sm
python -m spacy download pl_core_news_sm
pip install spaczz
pip install rapidfuzz