inject in non-lemmatized
This commit is contained in:
parent
3cbab11535
commit
716d7b7072
@ -6,7 +6,6 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"import copy\n",
|
|
||||||
"import nltk\n",
|
"import nltk\n",
|
||||||
"import pandas as pd\n",
|
"import pandas as pd\n",
|
||||||
"import rapidfuzz\n",
|
"import rapidfuzz\n",
|
||||||
@ -59,8 +58,6 @@
|
|||||||
"train_expected_path = 'mt-summit-corpora/dev-0/expected.tsv'\n",
|
"train_expected_path = 'mt-summit-corpora/dev-0/expected.tsv'\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n",
|
|
||||||
"\n",
|
|
||||||
"start_time = time.time_ns()\n",
|
"start_time = time.time_ns()\n",
|
||||||
"file_lemmatized = []\n",
|
"file_lemmatized = []\n",
|
||||||
"with open(train_in_path, 'r') as file:\n",
|
"with open(train_in_path, 'r') as file:\n",
|
||||||
@ -83,25 +80,25 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 45,
|
"execution_count": 64,
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"6.904260614\n"
|
"6.915366953\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"THRESHOLD = 88\n",
|
"THRESHOLD = 70\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def is_injectable(sentence_pl, sequence):\n",
|
"def is_injectable(sentence_pl, sequence):\n",
|
||||||
" sen = sentence_pl.split()\n",
|
" sen = sentence_pl.split()\n",
|
||||||
" window_size = len(sequence.split())\n",
|
" window_size = len(sequence.split())\n",
|
||||||
" maxx = 0\n",
|
" maxx = 0\n",
|
||||||
" for i in range(len(sen) - window_size):\n",
|
" for i in range(len(sen) - window_size + 1):\n",
|
||||||
" current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n",
|
" current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n",
|
||||||
" if current > maxx:\n",
|
" if current > maxx:\n",
|
||||||
" maxx = current\n",
|
" maxx = current\n",
|
||||||
@ -110,8 +107,9 @@
|
|||||||
" else:\n",
|
" else:\n",
|
||||||
" return False\n",
|
" return False\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def get_injected(sentence, sequence, inject):\n",
|
"def get_injected(sentence, sentence_en, sequence, inject):\n",
|
||||||
" sen = sentence.split()\n",
|
" sen = sentence.split()\n",
|
||||||
|
" sen_en = sentence_en.split()\n",
|
||||||
" window_size = len(sequence.split())\n",
|
" window_size = len(sequence.split())\n",
|
||||||
" maxx = 0\n",
|
" maxx = 0\n",
|
||||||
" maxxi = 0\n",
|
" maxxi = 0\n",
|
||||||
@ -120,31 +118,35 @@
|
|||||||
" if current >= maxx:\n",
|
" if current >= maxx:\n",
|
||||||
" maxx = current\n",
|
" maxx = current\n",
|
||||||
" maxxi = i\n",
|
" maxxi = i\n",
|
||||||
" return ' '.join(sen[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen[maxxi + window_size:])\n",
|
" temp = ' '.join(sen_en[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen_en[maxxi + window_size:])\n",
|
||||||
|
" return temp\n",
|
||||||
"\n",
|
"\n",
|
||||||
"glossary['source_lem'] = [' ' + str(default_process(x)) + ' ' for x in glossary['source_lem']]\n",
|
"glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]\n",
|
||||||
|
"file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n",
|
||||||
|
"file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()]\n",
|
||||||
|
"file_en= pd.read_csv(train_in_path, sep='\\t', header=None, names=['text'])\n",
|
||||||
|
"file_en['text'] = [default_process(text) for text in file_en['text'].values.tolist()]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"start_time = time.time_ns()\n",
|
"start_time = time.time_ns()\n",
|
||||||
"en = []\n",
|
"en = []\n",
|
||||||
"translation_line_counts = []\n",
|
"translation_line_counts = []\n",
|
||||||
"for line, line_pl in zip(file_lemmatized, file_pl['text'].values.tolist()):\n",
|
"for line, line_en, line_pl in zip(file_lemmatized, file_en['text'].values.tolist(), file_pl['text'].values.tolist()):\n",
|
||||||
" line = default_process(line)\n",
|
" line = default_process(line)\n",
|
||||||
" line_pl = default_process(line_pl)\n",
|
|
||||||
" matchez = rapidfuzz.process.extract(query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)\n",
|
" matchez = rapidfuzz.process.extract(query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)\n",
|
||||||
" if len(matchez) > 0:\n",
|
" if len(matchez) > 0:\n",
|
||||||
" lines_added = 0\n",
|
" lines_added = 0\n",
|
||||||
" for match in matchez:\n",
|
" for match in matchez:\n",
|
||||||
" polish_translation = glossary.loc[lambda df: df['source_lem'] == match[0]]['result'].astype(str).values.flatten()[0]\n",
|
" polish_translation = glossary.loc[lambda df: df['source_lem'] == match[0]]['result'].astype(str).values.flatten()[0]\n",
|
||||||
" if is_injectable(line_pl, polish_translation):\n",
|
" if is_injectable(line_pl, polish_translation):\n",
|
||||||
" en.append(get_injected(line, match[0], polish_translation))\n",
|
" en.append(get_injected(line, line_en, match[0], polish_translation))\n",
|
||||||
" lines_added += 1\n",
|
" lines_added += 1\n",
|
||||||
" if lines_added == 0:\n",
|
" if lines_added == 0:\n",
|
||||||
" en.append(line)\n",
|
" en.append(line_en)\n",
|
||||||
" lines_added = 1\n",
|
" lines_added = 1\n",
|
||||||
" translation_line_counts.append(lines_added)\n",
|
" translation_line_counts.append(lines_added)\n",
|
||||||
" else:\n",
|
" else:\n",
|
||||||
" translation_line_counts.append(1)\n",
|
" translation_line_counts.append(1)\n",
|
||||||
" en.append(line)\n",
|
" en.append(line_en)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"stop = time.time_ns()\n",
|
"stop = time.time_ns()\n",
|
||||||
@ -160,20 +162,19 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 46,
|
"execution_count": 65,
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"translations = pd.read_csv(train_expected_path, sep='\\t', header=0, names=['text'])\n",
|
"with open(train_expected_path + '.injected', 'w') as file_pl_write:\n",
|
||||||
"with open(train_expected_path + '.injected', 'w') as file_plx:\n",
|
" for line, translation_line_ct in zip(file_pl['text'].values.tolist(), translation_line_counts):\n",
|
||||||
" for line, translation_line_ct in zip(translations['text'].values.tolist(), translation_line_counts):\n",
|
|
||||||
" for i in range(translation_line_ct):\n",
|
" for i in range(translation_line_ct):\n",
|
||||||
" file_plx.write(line + '\\n')\n",
|
" file_pl_write.write(line + '\\n')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with open(train_in_path + '.injected', 'w') as file_en:\n",
|
"with open(train_in_path + '.injected', 'w') as file_en_write:\n",
|
||||||
" for e in en:\n",
|
" for e in en:\n",
|
||||||
" file_en.write(e + '\\n')"
|
" file_en_write.write(e + '\\n')"
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false,
|
"collapsed": false,
|
||||||
|
Loading…
Reference in New Issue
Block a user