train test split glossary

This commit is contained in:
jakubknczny 2022-01-23 17:48:37 +01:00
parent f1169e1540
commit a6e4a9d64a
3 changed files with 36 additions and 7 deletions

View File

@ -2,14 +2,22 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 1,
"outputs": [ "outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package wordnet to /home/kuba/nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n"
]
},
{ {
"data": { "data": {
"text/plain": " source \\\nsource_lem \naaofi aaofi \naca aca \nacca acca \nabacus abacus \nabandonment cost abandonment costs \n... ... \nytd ytd \nyear-end year-end \nyear-to-date year-to-date \nzog zog \nzero overhead growth zero overhead growth \n\n result \nsource_lem \naaofi organizacja rachunkowości i audytu dla islamsk... \naca członek stowarzyszenia dyplomowanych biegłych ... \nacca stowarzyszenie dyplomowanych biegłych rewidentów \nabacus liczydło \nabandonment cost koszty zaniechania \n... ... \nytd od początku roku \nyear-end koniec roku \nyear-to-date od początku roku \nzog zero wzrostu kosztów ogólnych \nzero overhead growth zero wzrostu kosztów ogólnych \n\n[1197 rows x 2 columns]", "text/plain": " source \\\nsource_lem \naaofi aaofi \naca aca \nacca acca \nabacus abacus \nabandonment cost abandonment costs \n... ... \nytd ytd \nyear-end year-end \nyear-to-date year-to-date \nzog zog \nzero overhead growth zero overhead growth \n\n result \nsource_lem \naaofi organizacja rachunkowości i audytu dla islamsk... \naca członek stowarzyszenia dyplomowanych biegłych ... \nacca stowarzyszenie dyplomowanych biegłych rewidentów \nabacus liczydło \nabandonment cost koszty zaniechania \n... ... \nytd od początku roku \nyear-end koniec roku \nyear-to-date od początku roku \nzog zero wzrostu kosztów ogólnych \nzero overhead growth zero wzrostu kosztów ogólnych \n\n[1197 rows x 2 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>source</th>\n <th>result</th>\n </tr>\n <tr>\n <th>source_lem</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>aaofi</th>\n <td>aaofi</td>\n <td>organizacja rachunkowości i audytu dla islamsk...</td>\n </tr>\n <tr>\n <th>aca</th>\n <td>aca</td>\n <td>członek stowarzyszenia dyplomowanych biegłych ...</td>\n </tr>\n <tr>\n <th>acca</th>\n <td>acca</td>\n <td>stowarzyszenie dyplomowanych biegłych rewidentów</td>\n </tr>\n <tr>\n <th>abacus</th>\n <td>abacus</td>\n <td>liczydło</td>\n </tr>\n <tr>\n <th>abandonment cost</th>\n <td>abandonment costs</td>\n <td>koszty zaniechania</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>ytd</th>\n <td>ytd</td>\n <td>od początku roku</td>\n </tr>\n <tr>\n <th>year-end</th>\n <td>year-end</td>\n <td>koniec roku</td>\n </tr>\n <tr>\n <th>year-to-date</th>\n <td>year-to-date</td>\n <td>od początku roku</td>\n </tr>\n <tr>\n <th>zog</th>\n <td>zog</td>\n <td>zero wzrostu kosztów ogólnych</td>\n </tr>\n <tr>\n <th>zero overhead growth</th>\n <td>zero overhead growth</td>\n <td>zero wzrostu kosztów ogólnych</td>\n </tr>\n </tbody>\n</table>\n<p>1197 rows × 2 columns</p>\n</div>" "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>source</th>\n <th>result</th>\n </tr>\n <tr>\n <th>source_lem</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>aaofi</th>\n <td>aaofi</td>\n <td>organizacja rachunkowości i audytu dla islamsk...</td>\n </tr>\n <tr>\n <th>aca</th>\n <td>aca</td>\n <td>członek stowarzyszenia dyplomowanych biegłych ...</td>\n </tr>\n <tr>\n <th>acca</th>\n <td>acca</td>\n <td>stowarzyszenie dyplomowanych biegłych rewidentów</td>\n </tr>\n <tr>\n <th>abacus</th>\n <td>abacus</td>\n <td>liczydło</td>\n </tr>\n <tr>\n <th>abandonment cost</th>\n <td>abandonment costs</td>\n <td>koszty zaniechania</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>ytd</th>\n <td>ytd</td>\n <td>od początku roku</td>\n </tr>\n <tr>\n <th>year-end</th>\n <td>year-end</td>\n <td>koniec roku</td>\n </tr>\n <tr>\n <th>year-to-date</th>\n <td>year-to-date</td>\n <td>od początku roku</td>\n </tr>\n <tr>\n <th>zog</th>\n <td>zog</td>\n <td>zero wzrostu kosztów ogólnych</td>\n </tr>\n <tr>\n <th>zero overhead growth</th>\n <td>zero overhead growth</td>\n <td>zero wzrostu kosztów ogólnych</td>\n </tr>\n </tbody>\n</table>\n<p>1197 rows × 2 columns</p>\n</div>"
}, },
"execution_count": 2, "execution_count": 1,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -51,13 +59,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 2,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.187306436\n" "0.191720194\n"
] ]
} }
], ],
@ -91,13 +99,30 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": null,
"outputs": [],
"source": [
" if len(file_lemmatized) % 50000 == 0:\n",
" print('lemmatizing file: ' + train_in_path + ': ' + str(len(file_lemmatized)), end='\\r')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"6.592824061\n" "1197\n",
"985\n",
"6.116408593\n"
] ]
} }
], ],
@ -134,6 +159,8 @@
" return sentence_en\n", " return sentence_en\n",
"\n", "\n",
"glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]\n", "glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]\n",
"glossary['hash'] = [hash(x) for x in glossary['source']]\n",
"glossary = glossary[glossary['hash'] % 100 > 16]\n",
"file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n", "file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n",
"file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()]\n", "file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()]\n",
"file_en= pd.read_csv(train_in_path, sep='\\t', header=None, names=['text'])\n", "file_en= pd.read_csv(train_in_path, sep='\\t', header=None, names=['text'])\n",

View File

@ -46,6 +46,8 @@ train_expected_path = os.path.join(os.path.expanduser('~'), 'mt-summit-corpora/t
glossary = pd.read_csv('~/mt-summit-corpora/glossary.tsv.lemmatized', sep='\t') glossary = pd.read_csv('~/mt-summit-corpora/glossary.tsv.lemmatized', sep='\t')
glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']] glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]
glossary['hash'] = [hash(x) for x in glossary['source']]
glossary = glossary[glossary['hash'] % 100 > 16]
file_pl = pd.read_csv(train_expected_path, sep='\t', header=None, names=['text']) file_pl = pd.read_csv(train_expected_path, sep='\t', header=None, names=['text'])
file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()] file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()]

View File

@ -12,7 +12,7 @@ train_expected_path = os.path.join(os.path.expanduser('~'), 'mt-summit-corpora/t
file_lemmatized = [] file_lemmatized = []
with open(train_in_path, 'r') as file: with open(train_in_path, 'r') as file:
for line in file: for line in file:
if len(file_lemmatized) % 50000 == 0: if len(file_lemmatized) % 1000 == 0:
print('lemmatizing file: ' + train_in_path + ': ' + str(len(file_lemmatized)), end='\r') print('lemmatizing file: ' + train_in_path + ': ' + str(len(file_lemmatized)), end='\r')
line = nltk.word_tokenize(line) line = nltk.word_tokenize(line)
file_lemmatized.append(' '.join([wl.lemmatize(x) for x in line])) file_lemmatized.append(' '.join([wl.lemmatize(x) for x in line]))