This commit is contained in:
jakubknczny 2022-01-23 16:01:44 +01:00
parent 716d7b7072
commit bb29472de9
9 changed files with 176 additions and 310 deletions

7
do_inject.sh Normal file
View File

@ -0,0 +1,7 @@
#!/bin/bash
source gpu/bin/activate
python scripts/lemmatize_glossary.py
python scripts/lemmatize_in.py
python scripts/inject.py

View File

@ -1,130 +0,0 @@
import spacy
import copy
import pandas as pd
import rapidfuzz
from rapidfuzz.fuzz import partial_ratio
import time
from rapidfuzz.utils import default_process
import sys
spacy.require_gpu()
spacy_nlp_en = spacy.load('en_core_web_sm')
spacy_nlp_pl = spacy.load("pl_core_news_sm")
def read_arguments():
try:
corpus_path, glossary_path = sys.argv
return corpus_path, glossary_path
except:
print("ERROR: Wrong argument amount.")
sys.exit(1)
glossary = pd.read_csv('mt-summit-corpora/glossary.tsv', sep='\t', header=None, names=['source', 'result'])
source_lemmatized = []
for word in glossary['source']:
temp = []
for token in spacy_nlp_en(word):
temp.append(token.lemma_)
source_lemmatized.append(' '.join(temp).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
result_lemmatized = []
for word in glossary['result']:
temp = []
for token in spacy_nlp_pl(word):
temp.append(token.lemma_)
result_lemmatized.append(' '.join(temp).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
glossary['source_lem'] = source_lemmatized
glossary['result_lem'] = result_lemmatized
glossary = glossary[['source', 'source_lem', 'result', 'result_lem']]
glossary.to_csv('kompendium_lem.tsv', sep='\t')
corpus_path = 'mt-summit-corpora/train/'
skip_chars = ''',./!?'''
with open(corpus_path + 'in.tsv', 'r') as file:
file_lemmatized = []
for line in file:
if len(file_lemmatized) % 10000 == 0:
print(len(file_lemmatized), end='\r')
temp = []
for token in spacy_nlp_en(line):
temp.append(token.lemma_)
file_lemmatized.append(' '.join([x for x in temp if x not in skip_chars]).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
with open(corpus_path + 'expected.tsv', 'r') as file:
file_pl_lemmatized = []
for line in file:
if len(file_pl_lemmatized) % 10000 == 0:
print(len(file_lemmatized), end='\r')
temp = []
for token in spacy_nlp_pl(line):
temp.append(token.lemma_)
file_pl_lemmatized.append(' '.join([x for x in temp if x not in skip_chars]).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
THRESHOLD = 88
def is_injectable(sentence_pl, sequence):
sen = sentence_pl.split()
window_size = len(sequence.split())
maxx = 0
for i in range(len(sen) - window_size):
current = rapidfuzz.fuzz.partial_ratio(' '.join(sen[i:i + window_size]), sequence)
if current > maxx:
maxx = current
return maxx
def inject(sentence, sequence):
sen = sentence.split()
window_size = len(sequence.split())
maxx = 0
maxxi = 0
for i in range(len(sen) - window_size):
current = rapidfuzz.fuzz.partial_ratio(' '.join(sen[i:i + window_size]), sequence)
if current > maxx:
maxx = current
maxxi = i
return ' '.join(sen[:maxxi + window_size]) + ' ' \
+ glossary.loc[lambda df: df['source_lem'] == sequence]['result'].astype(str).values.flatten() \
+ ' ' + ' '.join(sen[maxxi + window_size:])
glossary = pd.read_csv('../kompendium_lem_cleaned.tsv', sep='\t', header=0, index_col=0)
glossary['source_lem'] = [default_process(x) for x in glossary['source_lem']]
start_time = time.time_ns()
en = []
translation_line_counts = []
for line, line_pl in zip(file_lemmatized, file_pl_lemmatized):
if len(translation_line_counts) % 50000 == 0:
print(str(len(translation_line_counts)) + '/' + str(len(file_lemmatized), end='\r'))
line = default_process(line)
line_pl = default_process(line_pl)
matchez = rapidfuzz.process.extract(query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)
translation_line_counts.append(len(matchez))
for match in matchez:
# if is_injectable(line_pl, match[0]):
en.append(inject(line, match[0])[0])
stop = time.time_ns()
timex = (stop - start_time) / 1000000000
print(timex)
tlcs = copy.deepcopy(translation_line_counts)
translations = pd.read_csv(corpus_path + 'expected.tsv', sep='\t', header=None, names=['text'])
with open(corpus_path + 'extected.tsv.injected.crossvalidated.pl', 'w') as file_pl:
for line, translation_line_ct in zip(translations, tlcs):
for i in range(translation_line_ct):
file_pl.write(line)
with open(corpus_path + 'in.tsv.injected.crossvalidated.en', 'w') as file_en:
for e in en:
file_en.write(e + '\n')

View File

@ -1,136 +0,0 @@
import copy
import pandas as pd
import spacy
from spaczz.matcher import FuzzyMatcher
# spacy.require_gpu()
spacy_nlp_en = spacy.load('en_core_web_sm')
spacy_nlp_pl = spacy.load('pl_core_news_sm')
print('lemmatizing glossary')
glossary = pd.read_csv('glossary.tsv', sep='\t', header=None, names=['source', 'result'])
source_lemmatized = []
for word in glossary['source']:
temp = []
for token in spacy_nlp_en(word):
temp.append(token.lemma_)
source_lemmatized.append(' '.join(temp).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
result_lemmatized = []
for word in glossary['result']:
temp = []
for token in spacy_nlp_pl(word):
temp.append(token.lemma_)
result_lemmatized.append(' '.join(temp).replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
glossary['source_lem'] = source_lemmatized
glossary['result_lem'] = result_lemmatized
glossary = glossary[['source', 'source_lem', 'result', 'result_lem']]
glossary.set_index('source_lem')
glossary.to_csv('glossary_lem.tsv', sep='\t')
dev_path = 'dev-0/'
print('lemmatizing corpus ' + dev_path)
skip_chars = ''',./!?'''
with open(dev_path + 'in.tsv', 'r') as file:
file_lemmatized = []
for line in file:
temp = []
for token in spacy_nlp_en(line):
temp.append(token.lemma_)
file_lemmatized.append(' '.join([x for x in temp if x not in skip_chars])
.replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
with open(dev_path + 'expected.tsv', 'r') as file:
file_pl_lemmatized = []
for line in file:
temp = []
for token in spacy_nlp_pl(line):
temp.append(token.lemma_)
file_pl_lemmatized.append(' '.join([x for x in temp if x not in skip_chars])
.replace(' - ', '-').replace(' ', '').replace(' / ', '/').replace(' ( ', '(').replace(' ) ', ')'))
# glossary
glossary = pd.read_csv('glossary_lem.tsv', sep='\t', header=0, index_col=0)
train_glossary = glossary.iloc[[x for x in range(len(glossary)) if x % 6 != 0]]
# add rules to English matcher
nlp = spacy.blank("en")
matcher = FuzzyMatcher(nlp.vocab)
for word in train_glossary['source_lem']:
matcher.add(word, [nlp(word)])
# add rules to Polish matcher
nlp_pl = spacy.blank("pl")
matcher_pl = FuzzyMatcher(nlp_pl.vocab)
for word, word_id in zip(train_glossary['result_lem'], train_glossary['source_lem']):
matcher_pl.add(word, [nlp_pl(word)])
en = []
translation_line_counts = []
for line_id in range(len(file_lemmatized)):
if line_id % 100 == 0:
print('injecting glossary: ' + str(line_id) + "/" + str(len(file_lemmatized)), end='\r')
doc = nlp(file_lemmatized[line_id])
matches = matcher(doc)
line_counter = 0
for match_id, start, end, ratio in matches:
if ratio > 90:
doc_pl = nlp_pl(file_pl_lemmatized[line_id])
matches_pl = matcher_pl(doc_pl)
for match_id_pl, start_pl, end_pl, ratio_pl in matches_pl:
if match_id_pl == glossary[glossary['source_lem'] == match_id].values[0][3]:
line_counter += 1
en.append(''.join(doc[:end].text + ' ' + train_glossary.loc[lambda df: df['source_lem'] == match_id]['result'].astype(str).values.flatten() + ' ' + doc[end:].text))
if line_counter == 0:
line_counter = 1
en.append(file_lemmatized[line_id])
translation_line_counts.append(line_counter)
print('saving files')
tlcs = copy.deepcopy(translation_line_counts)
translations = pd.read_csv(dev_path + 'expected.tsv', sep='\t', header=None, names=['text'])
translations['id'] = [x for x in range(len(translations))]
ctr = 0
sentence = ''
with open(dev_path + 'in.tsv.injected.crossvalidated', 'w') as file_en:
with open(dev_path + 'expected.tsv.injected.crossvalidated', 'w') as file_pl:
for i in range(len(en)):
if i > 0:
if en[i-1] != en[i]:
if ctr == 0:
sentence = translations.iloc[0]
translations.drop(sentence['id'], inplace=True)
sentence = sentence['text']
try:
ctr = tlcs.pop(0)
except:
pass
file_en.write(en[i])
file_pl.write(sentence + '\n')
ctr = ctr - 1
else:
try:
ctr = tlcs.pop(0) - 1
except:
pass
sentence = translations.iloc[0]
translations.drop(sentence['id'], inplace=True)
sentence = sentence['text']
file_en.write(en[i])
file_pl.write(sentence + '\n')

View File

@ -1,26 +0,0 @@
import time
import nltk
from nltk.stem import WordNetLemmatizer
# nltk.download('omw-1.4')
# nltk.download('punkt')
nltk.download('wordnet')
wl = WordNetLemmatizer()
start_time = time.time_ns()
filex = []
with open('mt-summit-corpora/train/in.tsv', 'r') as file:
for line in file:
if len(filex) % 50000 == 0:
print(len(filex), end='\r')
line = nltk.word_tokenize(line)
filex.append(' '.join([wl.lemmatize(x) for x in line]))
stop = time.time_ns()
timex = (stop - start_time) / 1000000000
print(timex)
f = open('temp', 'w')
for line in filex:
f.write(line + '\n')

View File

@ -6,5 +6,4 @@ virtualenv -p python3.8 gpu
source gpu/bin/activate source gpu/bin/activate
pip install pandas ipython pip install pandas ipython
pip install nltk pip install nltk
python "nltk.download('omw-1.4')"
pip install rapidfuzz pip install rapidfuzz

View File

@ -2,8 +2,18 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 2,
"outputs": [], "outputs": [
{
"data": {
"text/plain": " source \\\nsource_lem \naaofi aaofi \naca aca \nacca acca \nabacus abacus \nabandonment cost abandonment costs \n... ... \nytd ytd \nyear-end year-end \nyear-to-date year-to-date \nzog zog \nzero overhead growth zero overhead growth \n\n result \nsource_lem \naaofi organizacja rachunkowości i audytu dla islamsk... \naca członek stowarzyszenia dyplomowanych biegłych ... \nacca stowarzyszenie dyplomowanych biegłych rewidentów \nabacus liczydło \nabandonment cost koszty zaniechania \n... ... \nytd od początku roku \nyear-end koniec roku \nyear-to-date od początku roku \nzog zero wzrostu kosztów ogólnych \nzero overhead growth zero wzrostu kosztów ogólnych \n\n[1197 rows x 2 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>source</th>\n <th>result</th>\n </tr>\n <tr>\n <th>source_lem</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>aaofi</th>\n <td>aaofi</td>\n <td>organizacja rachunkowości i audytu dla islamsk...</td>\n </tr>\n <tr>\n <th>aca</th>\n <td>aca</td>\n <td>członek stowarzyszenia dyplomowanych biegłych ...</td>\n </tr>\n <tr>\n <th>acca</th>\n <td>acca</td>\n <td>stowarzyszenie dyplomowanych biegłych rewidentów</td>\n </tr>\n <tr>\n <th>abacus</th>\n <td>abacus</td>\n <td>liczydło</td>\n </tr>\n <tr>\n <th>abandonment cost</th>\n <td>abandonment costs</td>\n <td>koszty zaniechania</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>ytd</th>\n <td>ytd</td>\n <td>od początku roku</td>\n </tr>\n <tr>\n <th>year-end</th>\n <td>year-end</td>\n <td>koniec roku</td>\n </tr>\n <tr>\n <th>year-to-date</th>\n <td>year-to-date</td>\n <td>od początku roku</td>\n </tr>\n <tr>\n <th>zog</th>\n <td>zog</td>\n <td>zero wzrostu kosztów ogólnych</td>\n </tr>\n <tr>\n <th>zero overhead growth</th>\n <td>zero overhead growth</td>\n <td>zero wzrostu kosztów ogólnych</td>\n </tr>\n </tbody>\n</table>\n<p>1197 rows × 2 columns</p>\n</div>"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"\n", "\n",
"import nltk\n", "import nltk\n",
@ -15,6 +25,8 @@
"from rapidfuzz.fuzz import partial_ratio\n", "from rapidfuzz.fuzz import partial_ratio\n",
"from rapidfuzz.utils import default_process\n", "from rapidfuzz.utils import default_process\n",
"\n", "\n",
"nltk.download('wordnet')\n",
"\n",
"\n", "\n",
"wl = WordNetLemmatizer()\n", "wl = WordNetLemmatizer()\n",
"\n", "\n",
@ -33,20 +45,19 @@
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
"pycharm": { "pycharm": {
"name": "#%%\n", "name": "#%%\n"
"is_executing": true
} }
} }
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 36, "execution_count": 12,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.194806501\n" "0.187306436\n"
] ]
} }
], ],
@ -80,13 +91,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 64, "execution_count": 19,
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"6.915366953\n" "6.592824061\n"
] ]
} }
], ],
@ -94,6 +105,7 @@
"\n", "\n",
"THRESHOLD = 70\n", "THRESHOLD = 70\n",
"\n", "\n",
"\n",
"def is_injectable(sentence_pl, sequence):\n", "def is_injectable(sentence_pl, sequence):\n",
" sen = sentence_pl.split()\n", " sen = sentence_pl.split()\n",
" window_size = len(sequence.split())\n", " window_size = len(sequence.split())\n",
@ -102,24 +114,24 @@
" current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n", " current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n",
" if current > maxx:\n", " if current > maxx:\n",
" maxx = current\n", " maxx = current\n",
" if maxx >= THRESHOLD:\n", " return maxx >= THRESHOLD\n",
" return True\n",
" else:\n",
" return False\n",
"\n", "\n",
"def get_injected(sentence, sentence_en, sequence, inject):\n", "def get_injected(sentence, sentence_en, sequence, inject):\n",
" sen = sentence.split()\n", " sen = sentence.split()\n",
" sen_en = sentence_en.split()\n", " sen_en = sentence_en.split()\n",
" window_size = len(sequence.split())\n", " window_size = len(sequence.split())\n",
" maxx = 0\n", " maxx = 0\n",
" maxx_prv = 0\n",
" maxxi = 0\n", " maxxi = 0\n",
" for i in range(len(sen) - window_size + 1):\n", " for i in range(len(sen) - window_size + 1):\n",
" current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n", " current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n",
" if current >= maxx:\n", " if current >= maxx:\n",
" maxx_prv = maxx\n",
" maxx = current\n", " maxx = current\n",
" maxxi = i\n", " maxxi = i\n",
" temp = ' '.join(sen_en[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen_en[maxxi + window_size:])\n", " if maxx_prv != maxx:\n",
" return temp\n", " return ' '.join(sen_en[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen_en[maxxi + window_size:])\n",
" return sentence_en\n",
"\n", "\n",
"glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]\n", "glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]\n",
"file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n", "file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n",
@ -162,14 +174,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 65, "execution_count": 21,
"outputs": [], "outputs": [],
"source": [ "source": [
"\n",
"def full_strip(line):\n",
" return ' '.join(line.split())\n",
"\n", "\n",
"with open(train_expected_path + '.injected', 'w') as file_pl_write:\n", "with open(train_expected_path + '.injected', 'w') as file_pl_write:\n",
" for line, translation_line_ct in zip(file_pl['text'].values.tolist(), translation_line_counts):\n", " for line, translation_line_ct in zip(file_pl['text'].values.tolist(), translation_line_counts):\n",
" for i in range(translation_line_ct):\n", " for i in range(translation_line_ct):\n",
" file_pl_write.write(line + '\\n')\n", " file_pl_write.write(full_strip(line) + '\\n')\n",
"\n", "\n",
"\n", "\n",
"with open(train_in_path + '.injected', 'w') as file_en_write:\n", "with open(train_in_path + '.injected', 'w') as file_en_write:\n",
@ -185,7 +200,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 16,
"outputs": [], "outputs": [],
"source": [], "source": [],
"metadata": { "metadata": {

95
scripts/inject.py Normal file
View File

@ -0,0 +1,95 @@
import pandas as pd
import rapidfuzz
from rapidfuzz.fuzz import partial_ratio
from rapidfuzz.utils import default_process
def full_strip(line):
return ' '.join(line.split())
def is_injectable(sentence_pl, sequence):
sen = sentence_pl.split()
window_size = len(sequence.split())
maxx = 0
for i in range(len(sen) - window_size + 1):
current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)
if current > maxx:
maxx = current
return maxx >= THRESHOLD
def get_injected(sentence, sentence_en, sequence, inject):
sen = sentence.split()
sen_en = sentence_en.split()
window_size = len(sequence.split())
maxx = 0
maxx_prv = 0
maxxi = 0
for i in range(len(sen) - window_size + 1):
current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)
if current >= maxx:
maxx_prv = maxx
maxx = current
maxxi = i
if maxx_prv != maxx:
return ' '.join(sen_en[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen_en[maxxi + window_size:])
return sentence_en
THRESHOLD = 70
# train_in_path = 'mt-summit-corpora/train/in.tsv'
# train_expected_path = 'mt-summit-corpora/train/expected.tsv'
train_in_path = 'mt-summit-corpora/dev-0/in.tsv'
train_expected_path = 'mt-summit-corpora/dev-0/expected.tsv'
glossary = pd.read_csv('mt-summit-corpora/glossary_lem.tsv', sep='\t')
glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]
file_pl = pd.read_csv(train_expected_path, sep='\t', header=None, names=['text'])
file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()]
file_pl = file_pl['text'].values.tolist()
file_en = pd.read_csv(train_in_path, sep='\t', header=None, names=['text'])
file_en['text'] = [default_process(text) for text in file_en['text'].values.tolist()]
file_en = file_en['text'].values.tolist()
file_en_lemmatized = pd.read_csv(train_in_path + '.lemmatized', sep='\t', header=None, names=['text'])
file_en_lemmatized['text'] = [default_process(text) for text in file_en_lemmatized['text'].values.tolist()]
file_en_lemmatized = file_en_lemmatized['text'].values.tolist()
en = []
translation_line_counts = []
for line, line_en, line_pl in zip(file_en_lemmatized, file_en, file_pl):
line = default_process(line)
matchez = rapidfuzz.process.extract(
query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)
if len(matchez) > 0:
lines_added = 0
for match in matchez:
polish_translation = \
glossary.loc[lambda df: df['source_lem'] == match[0]]['result'].astype(str).values.flatten()[0]
if is_injectable(line_pl, polish_translation):
en.append(get_injected(line, line_en, match[0], polish_translation))
lines_added += 1
if lines_added == 0:
en.append(line_en)
lines_added = 1
translation_line_counts.append(lines_added)
else:
translation_line_counts.append(1)
en.append(line_en)
with open(train_expected_path + '.injected', 'w') as file_pl_write:
for line, translation_line_ct in zip(file_pl, translation_line_counts):
for i in range(translation_line_ct):
file_pl_write.write(full_strip(line) + '\n')
with open(train_in_path + '.injected', 'w') as file_en_write:
for e in en:
file_en_write.write(e + '\n')

View File

@ -0,0 +1,19 @@
import nltk
import pandas as pd
from nltk.stem import WordNetLemmatizer
nltk.download('wordnet')
wl = WordNetLemmatizer()
glossary = pd.read_csv('mt-summit-corpora/glossary.tsv', sep='\t', header=None, names=['source', 'result'])
source_lemmatized = []
for word in glossary['source']:
word = nltk.word_tokenize(word)
source_lemmatized.append(' '.join([wl.lemmatize(x) for x in word]))
glossary['source_lem'] = source_lemmatized
glossary = glossary[['source', 'source_lem', 'result']]
glossary.set_index('source_lem')
glossary.to_csv('mt-summit-corpora/glossary_lem.tsv', sep='\t', index=False)

23
scripts/lemmatize_in.py Normal file
View File

@ -0,0 +1,23 @@
import nltk
from nltk.stem import WordNetLemmatizer
wl = WordNetLemmatizer()
# train_in_path = 'mt-summit-corpora/train/in.tsv'
# train_expected_path = 'mt-summit-corpora/train/expected.tsv'
train_in_path = 'mt-summit-corpora/dev-0/in.tsv'
train_expected_path = 'mt-summit-corpora/dev-0/expected.tsv'
file_lemmatized = []
with open(train_in_path, 'r') as file:
for line in file:
if len(file_lemmatized) % 50000 == 0:
print('lemmatizing file: ' + train_in_path + ': ' + str(len(file_lemmatized)), end='\r')
line = nltk.word_tokenize(line)
file_lemmatized.append(' '.join([wl.lemmatize(x) for x in line]))
with open(train_in_path + '.lemmatized', 'w') as file_write:
for line in file_lemmatized:
file_write.write(line + '\n')