{ "cells": [ { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "\n", "import copy\n", "import nltk\n", "import pandas as pd\n", "import rapidfuzz\n", "import time\n", "\n", "from nltk.stem import WordNetLemmatizer\n", "from rapidfuzz.fuzz import partial_ratio\n", "from rapidfuzz.utils import default_process\n", "\n", "\n", "wl = WordNetLemmatizer()\n", "\n", "glossary = pd.read_csv('mt-summit-corpora/glossary.tsv', sep='\\t', header=None, names=['source', 'result'])\n", "\n", "source_lemmatized = []\n", "for word in glossary['source']:\n", " word = nltk.word_tokenize(word)\n", " source_lemmatized.append(' '.join([wl.lemmatize(x) for x in word]))\n", "\n", "glossary['source_lem'] = source_lemmatized\n", "glossary = glossary[['source', 'source_lem', 'result']]\n", "glossary.set_index('source_lem')\n", "\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n", "is_executing": true } } }, { "cell_type": "code", "execution_count": 36, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.194806501\n" ] } ], "source": [ "# train_in_path = 'mt-summit-corpora/train/in.tsv'\n", "# train_expected_path = 'mt-summit-corpora/train/expected.tsv'\n", "\n", "train_in_path = 'mt-summit-corpora/dev-0/in.tsv'\n", "train_expected_path = 'mt-summit-corpora/dev-0/expected.tsv'\n", "\n", "\n", "file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n", "\n", "start_time = time.time_ns()\n", "file_lemmatized = []\n", "with open(train_in_path, 'r') as file:\n", " for line in file:\n", " if len(file_lemmatized) % 50000 == 0:\n", " print(len(file_lemmatized), end='\\r')\n", " line = nltk.word_tokenize(line)\n", " file_lemmatized.append(' '.join([wl.lemmatize(x) for x in line]))\n", "\n", "stop = time.time_ns()\n", "timex = (stop - start_time) / 1000000000\n", "print(timex)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 45, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6.904260614\n" ] } ], "source": [ "\n", "THRESHOLD = 88\n", "\n", "def is_injectable(sentence_pl, sequence):\n", " sen = sentence_pl.split()\n", " window_size = len(sequence.split())\n", " maxx = 0\n", " for i in range(len(sen) - window_size):\n", " current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n", " if current > maxx:\n", " maxx = current\n", " if maxx >= THRESHOLD:\n", " return True\n", " else:\n", " return False\n", "\n", "def get_injected(sentence, sequence, inject):\n", " sen = sentence.split()\n", " window_size = len(sequence.split())\n", " maxx = 0\n", " maxxi = 0\n", " for i in range(len(sen) - window_size + 1):\n", " current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n", " if current >= maxx:\n", " maxx = current\n", " maxxi = i\n", " return ' '.join(sen[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen[maxxi + window_size:])\n", "\n", "glossary['source_lem'] = [' ' + str(default_process(x)) + ' ' for x in glossary['source_lem']]\n", "\n", "start_time = time.time_ns()\n", "en = []\n", "translation_line_counts = []\n", "for line, line_pl in zip(file_lemmatized, file_pl['text'].values.tolist()):\n", " line = default_process(line)\n", " line_pl = default_process(line_pl)\n", " matchez = rapidfuzz.process.extract(query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)\n", " if len(matchez) > 0:\n", " lines_added = 0\n", " for match in matchez:\n", " polish_translation = glossary.loc[lambda df: df['source_lem'] == match[0]]['result'].astype(str).values.flatten()[0]\n", " if is_injectable(line_pl, polish_translation):\n", " en.append(get_injected(line, match[0], polish_translation))\n", " lines_added += 1\n", " if lines_added == 0:\n", " en.append(line)\n", " lines_added = 1\n", " translation_line_counts.append(lines_added)\n", " else:\n", " translation_line_counts.append(1)\n", " en.append(line)\n", "\n", "\n", "stop = time.time_ns()\n", "timex = (stop - start_time) / 1000000000\n", "print(timex)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 46, "outputs": [], "source": [ "\n", "translations = pd.read_csv(train_expected_path, sep='\\t', header=0, names=['text'])\n", "with open(train_expected_path + '.injected', 'w') as file_plx:\n", " for line, translation_line_ct in zip(translations['text'].values.tolist(), translation_line_counts):\n", " for i in range(translation_line_ct):\n", " file_plx.write(line + '\\n')\n", "\n", "\n", "with open(train_in_path + '.injected', 'w') as file_en:\n", " for e in en:\n", " file_en.write(e + '\\n')" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }