{ "cells": [ { "cell_type": "code", "execution_count": 2, "outputs": [ { "data": { "text/plain": " source \\\nsource_lem \naaofi aaofi \naca aca \nacca acca \nabacus abacus \nabandonment cost abandonment costs \n... ... \nytd ytd \nyear-end year-end \nyear-to-date year-to-date \nzog zog \nzero overhead growth zero overhead growth \n\n result \nsource_lem \naaofi organizacja rachunkowości i audytu dla islamsk... \naca członek stowarzyszenia dyplomowanych biegłych ... \nacca stowarzyszenie dyplomowanych biegłych rewidentów \nabacus liczydło \nabandonment cost koszty zaniechania \n... ... \nytd od początku roku \nyear-end koniec roku \nyear-to-date od początku roku \nzog zero wzrostu kosztów ogólnych \nzero overhead growth zero wzrostu kosztów ogólnych \n\n[1197 rows x 2 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
sourceresult
source_lem
aaofiaaofiorganizacja rachunkowości i audytu dla islamsk...
acaacaczłonek stowarzyszenia dyplomowanych biegłych ...
accaaccastowarzyszenie dyplomowanych biegłych rewidentów
abacusabacusliczydło
abandonment costabandonment costskoszty zaniechania
.........
ytdytdod początku roku
year-endyear-endkoniec roku
year-to-dateyear-to-dateod początku roku
zogzogzero wzrostu kosztów ogólnych
zero overhead growthzero overhead growthzero wzrostu kosztów ogólnych
\n

1197 rows × 2 columns

\n
" }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "import nltk\n", "import pandas as pd\n", "import rapidfuzz\n", "import time\n", "\n", "from nltk.stem import WordNetLemmatizer\n", "from rapidfuzz.fuzz import partial_ratio\n", "from rapidfuzz.utils import default_process\n", "\n", "nltk.download('wordnet')\n", "\n", "\n", "wl = WordNetLemmatizer()\n", "\n", "glossary = pd.read_csv('mt-summit-corpora/glossary.tsv', sep='\\t', header=None, names=['source', 'result'])\n", "\n", "source_lemmatized = []\n", "for word in glossary['source']:\n", " word = nltk.word_tokenize(word)\n", " source_lemmatized.append(' '.join([wl.lemmatize(x) for x in word]))\n", "\n", "glossary['source_lem'] = source_lemmatized\n", "glossary = glossary[['source', 'source_lem', 'result']]\n", "glossary.set_index('source_lem')\n", "\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 12, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.187306436\n" ] } ], "source": [ "# train_in_path = 'mt-summit-corpora/train/in.tsv'\n", "# train_expected_path = 'mt-summit-corpora/train/expected.tsv'\n", "\n", "train_in_path = 'mt-summit-corpora/dev-0/in.tsv'\n", "train_expected_path = 'mt-summit-corpora/dev-0/expected.tsv'\n", "\n", "\n", "start_time = time.time_ns()\n", "file_lemmatized = []\n", "with open(train_in_path, 'r') as file:\n", " for line in file:\n", " if len(file_lemmatized) % 50000 == 0:\n", " print(len(file_lemmatized), end='\\r')\n", " line = nltk.word_tokenize(line)\n", " file_lemmatized.append(' '.join([wl.lemmatize(x) for x in line]))\n", "\n", "stop = time.time_ns()\n", "timex = (stop - start_time) / 1000000000\n", "print(timex)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 19, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6.592824061\n" ] } ], "source": [ "\n", "THRESHOLD = 70\n", "\n", "\n", "def is_injectable(sentence_pl, sequence):\n", " sen = sentence_pl.split()\n", " window_size = len(sequence.split())\n", " maxx = 0\n", " for i in range(len(sen) - window_size + 1):\n", " current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n", " if current > maxx:\n", " maxx = current\n", " return maxx >= THRESHOLD\n", "\n", "def get_injected(sentence, sentence_en, sequence, inject):\n", " sen = sentence.split()\n", " sen_en = sentence_en.split()\n", " window_size = len(sequence.split())\n", " maxx = 0\n", " maxx_prv = 0\n", " maxxi = 0\n", " for i in range(len(sen) - window_size + 1):\n", " current = rapidfuzz.fuzz.ratio(' '.join(sen[i:i + window_size]), sequence)\n", " if current >= maxx:\n", " maxx_prv = maxx\n", " maxx = current\n", " maxxi = i\n", " if maxx_prv != maxx:\n", " return ' '.join(sen_en[:maxxi + window_size]) + ' $' + inject + '$ ' + ' '.join(sen_en[maxxi + window_size:])\n", " return sentence_en\n", "\n", "glossary['source_lem'] = [str(default_process(x)) for x in glossary['source_lem']]\n", "file_pl = pd.read_csv(train_expected_path, sep='\\t', header=None, names=['text'])\n", "file_pl['text'] = [default_process(text) for text in file_pl['text'].values.tolist()]\n", "file_en= pd.read_csv(train_in_path, sep='\\t', header=None, names=['text'])\n", "file_en['text'] = [default_process(text) for text in file_en['text'].values.tolist()]\n", "\n", "start_time = time.time_ns()\n", "en = []\n", "translation_line_counts = []\n", "for line, line_en, line_pl in zip(file_lemmatized, file_en['text'].values.tolist(), file_pl['text'].values.tolist()):\n", " line = default_process(line)\n", " matchez = rapidfuzz.process.extract(query=line, choices=glossary['source_lem'], limit=5, score_cutoff=THRESHOLD, scorer=partial_ratio)\n", " if len(matchez) > 0:\n", " lines_added = 0\n", " for match in matchez:\n", " polish_translation = glossary.loc[lambda df: df['source_lem'] == match[0]]['result'].astype(str).values.flatten()[0]\n", " if is_injectable(line_pl, polish_translation):\n", " en.append(get_injected(line, line_en, match[0], polish_translation))\n", " lines_added += 1\n", " if lines_added == 0:\n", " en.append(line_en)\n", " lines_added = 1\n", " translation_line_counts.append(lines_added)\n", " else:\n", " translation_line_counts.append(1)\n", " en.append(line_en)\n", "\n", "\n", "stop = time.time_ns()\n", "timex = (stop - start_time) / 1000000000\n", "print(timex)\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 21, "outputs": [], "source": [ "\n", "def full_strip(line):\n", " return ' '.join(line.split())\n", "\n", "with open(train_expected_path + '.injected', 'w') as file_pl_write:\n", " for line, translation_line_ct in zip(file_pl['text'].values.tolist(), translation_line_counts):\n", " for i in range(translation_line_ct):\n", " file_pl_write.write(full_strip(line) + '\\n')\n", "\n", "\n", "with open(train_in_path + '.injected', 'w') as file_en_write:\n", " for e in en:\n", " file_en_write.write(e + '\\n')" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 16, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }