final version
This commit is contained in:
parent
69ffea5376
commit
c707190af0
13
README.md
Normal file
13
README.md
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
Skeptic vs paranormal subreddits
|
||||||
|
================================
|
||||||
|
|
||||||
|
Classify a reddit as either from Skeptic subreddit or one of the
|
||||||
|
"paranormal" subreddits (Paranormal, UFOs, TheTruthIsHere, Ghosts,
|
||||||
|
,Glitch-in-the-Matrix, conspiracytheories).
|
||||||
|
|
||||||
|
Output label is the probability of a paranormal subreddit.
|
||||||
|
|
||||||
|
Sources
|
||||||
|
-------
|
||||||
|
|
||||||
|
Data taken from <https://archive.org/details/2015_reddit_comments_corpus>.
|
1
config.txt
Normal file
1
config.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
--metric Likelihood --metric Accuracy --metric F1 --metric F0:N<Precision> --metric F9999999:N<Recall> --precision 4 --in-header in-header.tsv --out-header out-header.tsv
|
5272
dev-0/expected.tsv
Normal file
5272
dev-0/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
dev-0/in.tsv.xz
Normal file
BIN
dev-0/in.tsv.xz
Normal file
Binary file not shown.
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
101
ffn.py
Normal file
101
ffn.py
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torch.optim as optim
|
||||||
|
import pickle
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from word2vec import Word2Vec
|
||||||
|
|
||||||
|
|
||||||
|
class FFN(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, input_dim, output_dim, hidden1_size, hidden2_size, lr, epochs, batch_size):
|
||||||
|
super(FFN, self).__init__()
|
||||||
|
self.path = 'model1.pickle'
|
||||||
|
self.lr = lr
|
||||||
|
self.epochs = epochs
|
||||||
|
self.output_dim = output_dim
|
||||||
|
self.word2vec = Word2Vec()
|
||||||
|
self.word2vec.load()
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.input_dim = input_dim
|
||||||
|
self.fc1 = nn.Linear(batch_size, hidden1_size)
|
||||||
|
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
|
||||||
|
self.fc3 = nn.Linear(hidden2_size, hidden2_size)
|
||||||
|
self.fc4 = nn.Linear(hidden2_size, hidden2_size)
|
||||||
|
self.fc5 = nn.Linear(hidden2_size, batch_size)
|
||||||
|
|
||||||
|
def forward(self, data):
|
||||||
|
data = F.relu(self.fc1(data))
|
||||||
|
data = F.relu(self.fc2(data))
|
||||||
|
data = F.relu(self.fc3(data))
|
||||||
|
data = F.relu(self.fc4(data))
|
||||||
|
data = F.sigmoid(self.fc5(data))
|
||||||
|
return data
|
||||||
|
|
||||||
|
def serialize(self):
|
||||||
|
with open(self.path, 'wb') as file:
|
||||||
|
pickle.dump(self, file)
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
with open(self.path, 'rb') as file:
|
||||||
|
self = pickle.load(file)
|
||||||
|
|
||||||
|
def batch(self, iterable, n=1):
|
||||||
|
l = len(iterable)
|
||||||
|
for ndx in range(0, l, n):
|
||||||
|
yield iterable[ndx:min(ndx + n, l)]
|
||||||
|
|
||||||
|
|
||||||
|
def train(self, data, expected):
|
||||||
|
self.zero_grad()
|
||||||
|
criterion = torch.nn.BCELoss()
|
||||||
|
optimizer = optim.Adam(self.parameters(), lr=self.lr)
|
||||||
|
batch_size = self.batch_size
|
||||||
|
num_of_classes = self.output_dim
|
||||||
|
for epoch in range(self.epochs):
|
||||||
|
epoch_loss = 0.0
|
||||||
|
idx = 0
|
||||||
|
for i in range(0, int(len(data)/batch_size)*batch_size, batch_size):
|
||||||
|
inputs = data[i:i + batch_size]
|
||||||
|
labels = expected[i:i+ batch_size]
|
||||||
|
optimizer.zero_grad()
|
||||||
|
outputs = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
|
||||||
|
target = torch.tensor(labels.values).double()
|
||||||
|
loss = criterion(outputs.view(batch_size), target.view(-1,))
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
epoch_loss += loss.item()
|
||||||
|
if(idx % 1000 == 0):
|
||||||
|
print('epoch: {}, idx: {}, loss: {}'.format(epoch, idx, epoch_loss/1000))
|
||||||
|
epoch_loss = 0
|
||||||
|
idx += 1
|
||||||
|
self.serialize()
|
||||||
|
|
||||||
|
def test(self, data, expected, path):
|
||||||
|
correct = 0
|
||||||
|
incorrect = 0
|
||||||
|
total = 0
|
||||||
|
predictions = []
|
||||||
|
batch_size = self.batch_size
|
||||||
|
for i in range(0, int(len(data)/batch_size)*batch_size, batch_size):
|
||||||
|
inputs = data[i:i + batch_size]
|
||||||
|
labels = expected[i:i+ batch_size]
|
||||||
|
predicted = self.forward(torch.tensor(self.word2vec.list_of_sentences2vec(inputs)))
|
||||||
|
score = [1 if x > 0.5 else 0 for x in predicted]
|
||||||
|
|
||||||
|
for x, y in zip(score, labels):
|
||||||
|
if(x == y):
|
||||||
|
correct += 1
|
||||||
|
else:
|
||||||
|
incorrect += 1
|
||||||
|
predictions.append(score)
|
||||||
|
|
||||||
|
print(correct)
|
||||||
|
print(incorrect)
|
||||||
|
print(correct/(incorrect + correct))
|
||||||
|
df = pd.DataFrame(np.asarray(predictions).reshape(int(len(data)/batch_size)*batch_size))
|
||||||
|
df.reset_index(drop=True, inplace=True)
|
||||||
|
df.to_csv(path, sep="\t", index=False)
|
1
in-header.tsv
Normal file
1
in-header.tsv
Normal file
@ -0,0 +1 @@
|
|||||||
|
PostText Timestamp
|
|
51
main.py
Normal file
51
main.py
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import spacy
|
||||||
|
from ffn import FFN
|
||||||
|
import numpy as np
|
||||||
|
from nltk.tokenize import word_tokenize
|
||||||
|
sp = spacy.load('en_core_web_sm')
|
||||||
|
|
||||||
|
|
||||||
|
def word2vec(word):
|
||||||
|
return sp(word).vector
|
||||||
|
|
||||||
|
|
||||||
|
def create_embeddings_file(data, path, func):
|
||||||
|
out = []
|
||||||
|
for line in data:
|
||||||
|
out.append(func(line))
|
||||||
|
df = pd.DataFrame(out)
|
||||||
|
df.to_csv(path)
|
||||||
|
|
||||||
|
|
||||||
|
def load_embeddings_file(path):
|
||||||
|
return pd.read_csv(path)
|
||||||
|
|
||||||
|
|
||||||
|
train_data = pd.read_csv("train/in.tsv", sep='\t')
|
||||||
|
train_data.columns = ['PostText', 'Timestamp']
|
||||||
|
train_expected = pd.read_csv("train/expected.tsv", sep='\t')
|
||||||
|
train_expected.columns = ['Label']
|
||||||
|
|
||||||
|
test_data = pd.read_csv("test-A/in.tsv", sep='\t')
|
||||||
|
test_data.columns = ['PostText', 'Timestamp']
|
||||||
|
|
||||||
|
dev_data = pd.read_csv('dev-0/in.tsv', sep='\t')
|
||||||
|
dev_data.columns = ['PostText', 'Timestamp']
|
||||||
|
dev_expected = pd.read_csv('dev-0/expected.tsv', sep='\t')
|
||||||
|
dev_expected.columns = ['Label']
|
||||||
|
|
||||||
|
create_embeddings_file(dev_data['PostText'], 'dev-0/embeddings.csv', word2vec)
|
||||||
|
create_embeddings_file(test_data['PostText'], 'test-A/embeddings.csv', word2vec)
|
||||||
|
create_embeddings_file(train_data['PostText'], 'train/embeddings.csv', word2vec)
|
||||||
|
|
||||||
|
train_data = load_embeddings_file('train/embeddings.csv').to_numpy()
|
||||||
|
dev_data = load_embeddings_file('dev-0/embeddings.csv').to_numpy()
|
||||||
|
test_data = load_embeddings_file('test-A/embeddings.csv').to_numpy()
|
||||||
|
|
||||||
|
model = FFN(300, 1, 300, 300, 0.01, 4, 100)
|
||||||
|
model.double()
|
||||||
|
model.train([np.asarray(word_tokenize(x)) for x in train_data['PostText']], train_expected['Label'])
|
||||||
|
model.load()
|
||||||
|
model.double()
|
||||||
|
model.test([np.asarray(word_tokenize(x)) for x in train_data['PostText']], train_expected['Label'], "train/out.tsv")
|
1
out-header.tsv
Normal file
1
out-header.tsv
Normal file
@ -0,0 +1 @@
|
|||||||
|
Label
|
|
BIN
test-A/in.tsv.xz
Normal file
BIN
test-A/in.tsv.xz
Normal file
Binary file not shown.
289579
train/expected.tsv
Normal file
289579
train/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
train/in.tsv.xz
Normal file
BIN
train/in.tsv.xz
Normal file
Binary file not shown.
16
word2vec.py
Normal file
16
word2vec.py
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
import gensim.downloader
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class Word2Vec():
|
||||||
|
def __init__(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
self.model = gensim.downloader.load('word2vec-google-news-300')
|
||||||
|
|
||||||
|
def sentence2vec(self, sentence):
|
||||||
|
return np.mean([self.model[word] if word in self.model else np.zeros(300) for word in sentence])
|
||||||
|
|
||||||
|
def list_of_sentences2vec(self, sentences):
|
||||||
|
return [self.sentence2vec(x) for x in sentences]
|
Loading…
Reference in New Issue
Block a user