Compare commits

..

No commits in common. "master" and "master" have entirely different histories.

13 changed files with 0 additions and 32741 deletions

2
.idea/.gitignore vendored
View File

@ -1,2 +0,0 @@
# Default ignored files
/workspace.xml

View File

@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

View File

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (paranormal-or-skeptic-ISI-public-bayes-2)" project-jdk-type="Python SDK" />
</project>

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/retroc2-linear-regression.iml" filepath="$PROJECT_DIR$/.idea/retroc2-linear-regression.iml" />
</modules>
</component>
</project>

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.7 (paranormal-or-skeptic-ISI-public-bayes-2)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

View File

@ -1,6 +0,0 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

BIN
geval

Binary file not shown.

File diff suppressed because it is too large Load Diff

37
main.py
View File

@ -1,37 +0,0 @@
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LinearRegression
df = pd.read_csv('./train/train.tsv', header=None, sep='\t')
df['mean'] = (df.iloc[:, 0] + df.iloc[:, 1]) / 2
vect = TfidfVectorizer()
x_train_vect = vect.fit_transform(df[4])
# wytrenowany model jest zapisany jako "finalized_model.sav"
reg = LinearRegression().fit(x_train_vect, df['mean'])
# zapis modelu
# import pickle
# filename = 'finalized_model.sav'
# pickle.dump(reg, open(filename, 'wb'))
# predykcje dla dev-1
x_test = pd.read_csv('./dev-1/in.tsv', header=None, sep='\t')
y_test = pd.read_csv('./dev-1/expected.tsv', header=None, sep='\t')
x_test_vect = vect.transform(x_test[0])
y_pred = reg.predict(x_test_vect)
pd.DataFrame(y_pred).to_csv('./dev-1/out.tsv', header=None, sep='\t', index=False)
# predykcje dla dev-0
x_test_dev0 = pd.read_csv('./dev-0/in.tsv', header=None, sep='\t')
y_test_dev0 = pd.read_csv('./dev-0/expected.tsv', header=None, sep='\t')
x_test_dev0_vect = vect.transform(x_test_dev0[0])
y_pred_dev_0 = reg.predict(x_test_dev0_vect)
pd.DataFrame(y_pred_dev_0).to_csv('./dev-0/out.tsv', header=None, sep='\t', index=False)