init
This commit is contained in:
commit
8a2b6e54a6
307
cnn.ipynb
Normal file
307
cnn.ipynb
Normal file
@ -0,0 +1,307 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 160,
|
||||
"id": "b026b65f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"from tensorflow.keras import datasets\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D\n",
|
||||
"import os\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"import cv2\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 162,
|
||||
"id": "f4b3c889",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def preprocess(img):\n",
|
||||
" scale_percent = 10\n",
|
||||
" width = int(img.shape[1] * scale_percent / 100)\n",
|
||||
" height = int(img.shape[0] * scale_percent / 100)\n",
|
||||
" dim = (width, height)\n",
|
||||
" resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)\n",
|
||||
"# resized = resized.flatten()\n",
|
||||
" return resized\n",
|
||||
"\n",
|
||||
"def readData(data_links):\n",
|
||||
" x, y = [], []\n",
|
||||
" for link in data_links:\n",
|
||||
" img = cv2.imread(link, cv2.IMREAD_COLOR)\n",
|
||||
" img = preprocess(img)\n",
|
||||
" label = link.split(\"/\")[1].split('_')[1]\n",
|
||||
" new_label = 4\n",
|
||||
" \n",
|
||||
" if label == '3':\n",
|
||||
" new_label = 0\n",
|
||||
" elif label == '5':\n",
|
||||
" new_label = 1\n",
|
||||
" elif label == '8':\n",
|
||||
" new_label = 2\n",
|
||||
" else:\n",
|
||||
" print(\"chuj\")\n",
|
||||
" \n",
|
||||
" x.append(img)\n",
|
||||
" y.append(new_label)\n",
|
||||
"\n",
|
||||
" return x, y\n",
|
||||
"\n",
|
||||
"data_links = os.listdir(\"data/\")\n",
|
||||
"data_links = [\"data/\" + x for x in data_links]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 163,
|
||||
"id": "b9df2aa9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x, y = readData(data_links)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 164,
|
||||
"id": "a8977fc6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=42)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 165,
|
||||
"id": "6764d3d3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"675\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(len(X_train))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 166,
|
||||
"id": "97e8bc4e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(60, 80, 3)"
|
||||
]
|
||||
},
|
||||
"execution_count": 166,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"X_train[0].shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 167,
|
||||
"id": "2df14985",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[2, 2, 2, 2, 2, 1, 1, 0, 0, 2, 0, 2, 2, 0, 2, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 0, 2, 1, 0, 2, 1, 0, 1, 1, 1, 2, 0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 0, 1, 2, 2, 2, 1, 1, 1, 2, 2, 0, 2, 2, 1, 0, 2, 0, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 2, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 2, 2, 2, 2, 0, 1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 0, 1, 0, 0, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 2, 2, 2, 2, 0, 1, 1, 2, 0, 1, 2, 1, 0, 0, 1, 1, 1, 0, 0, 2, 1, 2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 2, 0, 1, 0, 2, 0, 2, 1, 1, 0, 1, 1, 1, 2, 0, 2, 2, 1, 2, 2, 1, 0, 0, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 0, 0, 0, 2, 1, 2, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 2, 1, 0, 0, 1, 2, 1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 2, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 2, 2, 1, 2, 2, 1, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 0, 2, 2, 2, 0, 1, 2, 0, 2, 1, 2, 1, 1, 2, 0, 1, 0, 0, 1, 2, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 1, 2, 2, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 1, 2, 1, 2, 1, 1, 1, 2, 0, 2, 1, 1, 0, 0, 0, 2, 2, 0, 1, 2, 2, 1, 1, 1, 2, 2, 2, 0, 0, 1, 1, 0, 2, 1, 2, 0, 1, 2, 1, 1, 0, 2, 1, 0, 2, 0, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 1, 2, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 0, 2, 1, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 0, 1, 1, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 0, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 2]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 168,
|
||||
"id": "2d3f1e5e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[2 1 2 0 0 0 2 2 1 2 2 2 2 0 1 2 0 2 1 1 0 0 2 0 1 0 1 0 1 0 0 2 2 0 1 1 1\n",
|
||||
" 2 0 2 2 2 0 1 1 0 0 0 2 2 2 1 0 0 1 0 1 2 1 0 2 0 1 0 2 0 2 1 0 0 0 0 1 0\n",
|
||||
" 1 0 1 2 0 2 0 2 1 1 1 2 1 2 1 2 0 2 0 2 2 1 1 0 1 2 1 2 2 2 2 0 0 0 0 1 1\n",
|
||||
" 0 0 0 0 0 0 2 0 2 2 0 1 1 2 1 1 2 2 1 2 2 1 0 1 2 1 2 0 2 1 0 2 1 1 2 2 2\n",
|
||||
" 2 1 2 2 0 0 0 0 0 1 1 1 0 2 2 2 2 2 2 0 0 0 2 2 0 2 0 1 0 1 1 1 2 0 1 0 1\n",
|
||||
" 1 0 0 0 1 1 1 2 0 2 1 2 0 2 2 0 2 0 2 2 2 1 2 1 2 0 2 1 2 2 2 2 0 1 0 1 2\n",
|
||||
" 2 1 1]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"X_train = np.array([i / 255.0 for i in X_train], dtype=np.float64)\n",
|
||||
"X_test = np.array([i / 255.0 for i in X_test], dtype=np.float64)\n",
|
||||
"y_train = np.array(y_train, dtype=np.int64)\n",
|
||||
"y_test = np.array(y_test, dtype=np.int64)\n",
|
||||
"\n",
|
||||
"print(y_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 170,
|
||||
"id": "2a10ce01",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = Sequential()\n",
|
||||
"model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(60, 80, 3)))\n",
|
||||
"model.add(MaxPooling2D((2, 2)))\n",
|
||||
"model.add(Conv2D(64, (3, 3), activation='relu'))\n",
|
||||
"model.add(MaxPooling2D((2, 2)))\n",
|
||||
"model.add(Conv2D(64, (3, 3), activation='relu'))\n",
|
||||
"model.add(Flatten())\n",
|
||||
"model.add(Dense(512, activation='relu'))\n",
|
||||
"model.add(Dense(3, activation='sigmoid'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 171,
|
||||
"id": "67f6cef9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(optimizer='adam',\n",
|
||||
" loss=tf.keras.losses.SparseCategoricalCrossentropy(),\n",
|
||||
" metrics=['accuracy'])\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 172,
|
||||
"id": "802da4db",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/10\n",
|
||||
"22/22 [==============================] - 2s 98ms/step - loss: 1.1007 - accuracy: 0.4000 - val_loss: 0.9776 - val_accuracy: 0.5422\n",
|
||||
"Epoch 2/10\n",
|
||||
"22/22 [==============================] - 2s 90ms/step - loss: 0.8537 - accuracy: 0.6667 - val_loss: 0.7531 - val_accuracy: 0.6489\n",
|
||||
"Epoch 3/10\n",
|
||||
"22/22 [==============================] - 2s 89ms/step - loss: 0.7288 - accuracy: 0.6948 - val_loss: 1.5778 - val_accuracy: 0.4978\n",
|
||||
"Epoch 4/10\n",
|
||||
"22/22 [==============================] - 2s 91ms/step - loss: 0.7752 - accuracy: 0.6593 - val_loss: 0.7269 - val_accuracy: 0.7333\n",
|
||||
"Epoch 5/10\n",
|
||||
"22/22 [==============================] - 2s 89ms/step - loss: 0.5980 - accuracy: 0.7585 - val_loss: 0.6848 - val_accuracy: 0.7067\n",
|
||||
"Epoch 6/10\n",
|
||||
"22/22 [==============================] - 2s 91ms/step - loss: 0.4614 - accuracy: 0.8326 - val_loss: 0.7548 - val_accuracy: 0.6978\n",
|
||||
"Epoch 7/10\n",
|
||||
"22/22 [==============================] - 2s 95ms/step - loss: 0.4666 - accuracy: 0.8119 - val_loss: 0.4485 - val_accuracy: 0.8356\n",
|
||||
"Epoch 8/10\n",
|
||||
"22/22 [==============================] - 2s 98ms/step - loss: 0.2721 - accuracy: 0.9156 - val_loss: 0.3949 - val_accuracy: 0.8311\n",
|
||||
"Epoch 9/10\n",
|
||||
"22/22 [==============================] - 2s 92ms/step - loss: 0.2106 - accuracy: 0.9289 - val_loss: 0.3096 - val_accuracy: 0.8933\n",
|
||||
"Epoch 10/10\n",
|
||||
"22/22 [==============================] - 2s 93ms/step - loss: 0.1317 - accuracy: 0.9556 - val_loss: 0.2744 - val_accuracy: 0.8800\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"history = model.fit(X_train, y_train, epochs=10, \n",
|
||||
" validation_data=(X_test, y_test))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a27e69ff",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "21696ef3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ebd5b1c1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "57828ac4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1893f9da",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a1448617",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue
Block a user