from sklearn.linear_model import LinearRegression import pandas as pd import numpy as np def get_model(): df = pd.read_csv('./train/train.tsv', sep='\t', names=["price", "mileage", "year", "brand", "engine_type", "engine_capacity"]) X = df.loc[:, df.columns != 'price'] y = df['price'] X = X.drop(["brand"], axis=1) X = pd.get_dummies(X, columns= ["engine_type"], drop_first=True) regr = LinearRegression() return regr.fit(X, y) def predict_and_write(path, model): with open(f'{path}out.tsv', 'w') as out: df_dev = pd.read_csv(f'{path}in.tsv', sep='\t', names=["mileage", "year", "brand", "engine_type", "engine_capacity"]) df_dev = df_dev.drop(["brand"], axis=1) df_dev = pd.get_dummies(df_dev, columns= ["engine_type"], drop_first=True) predictions = model.predict(df_dev).astype(int) for prediction in predictions: out.write(f"{prediction}\n") def main(): model = get_model() predict_and_write('./dev-0/', model) predict_and_write('./test-A/', model) if __name__ == '__main__': main()