from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import pandas as pd import numpy as np brands = None def process_data(df): df["age"] = 2018 - df["year"] df["sqrt_age"] = df.age**0.7 df["sqrt_mileage"] = df.mileage ** 0.7 df["sqrt_engine_capacity"] = df.engine_capacity ** 0.7 global brands if not brands: brands = df.brand.value_counts()[:35].index.tolist() df.brand = df.brand.apply(lambda x: x if x in brands else "0") df = pd.get_dummies(df) poly = PolynomialFeatures(2, interaction_only=True) df = poly.fit_transform(df) return df def get_model(): df = pd.read_csv('./train/train.tsv', sep='\t', names=["price", "mileage", "year", "brand", "engine_type", "engine_capacity"]) X = df.loc[:, df.columns != 'price'] y = df['price'] X = process_data(X) regr = LinearRegression() return regr.fit(X, y) def predict_and_write(path, model): with open(f'{path}out.tsv', 'w') as out: df_dev = pd.read_csv(f'{path}in.tsv', sep='\t', names=["mileage", "year", "brand", "engine_type", "engine_capacity"]) df_dev = process_data(df_dev) predictions = model.predict(df_dev).astype(int) for prediction in predictions: out.write(f"{prediction}\n") def main(): model = get_model() predict_and_write('./dev-0/', model) predict_and_write('./test-A/', model) if __name__ == '__main__': main()