challenging-america-word-ga.../run2.py

172 lines
4.8 KiB
Python
Raw Normal View History

2022-05-08 16:29:51 +02:00
import itertools
import lzma
2022-04-25 06:59:21 +02:00
import regex as re
2022-05-08 16:29:51 +02:00
import torch
from nltk.tokenize import RegexpTokenizer
from torch import nn
from torch.utils.data import DataLoader, IterableDataset
from torchtext.vocab import build_vocab_from_iterator
VOCAB_SIZE = 40000
EMBED_SIZE = 100
DEVICE = "cuda"
tokenizer = RegexpTokenizer(r"\w+")
def read_file(file):
for line in file:
text = line.split("\t")
yield re.sub(
r"[^\w\d'\s]+",
"",
re.sub(" +", " ", text[6].replace("\\n", " ").replace("\n", "").lower()),
)
def get_words(line):
line = line.rstrip()
yield "<s>"
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
yield m.group(0).lower()
yield "</s>"
def get_line(file_path):
with lzma.open(file_path, mode="rt") as file:
for _, line in enumerate(file):
text = line.split("\t")
yield get_words(
re.sub(
r"[^\w\d'\s]+",
"",
re.sub(
" +",
" ",
" ".join([text[6], text[7]])
.replace("\\n", " ")
.replace("\n", "")
.lower(),
),
)
)
def buidl_vocab():
vocab = build_vocab_from_iterator(
get_line("train/in.tsv.xz"), max_tokens=VOCAB_SIZE, specials=["<unk>"]
2022-04-25 06:59:21 +02:00
)
2022-05-08 16:29:51 +02:00
vocab.set_default_index(vocab["<unk>"])
return vocab
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax(),
)
def forward(self, x):
return self.model(x)
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_line(text_file), max_tokens=vocabulary_size, specials=["<unk>"]
)
self.vocab.set_default_index(self.vocab["<unk>"])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(
self.vocab[t]
for t in itertools.chain.from_iterable(get_line(self.text_file))
)
)
vocab = buidl_vocab()
def train():
batch_size = 10000
train_dataset = Bigrams("train/in.tsv.xz", VOCAB_SIZE)
device = "cuda"
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(device)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for x, y in train_data_loader:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), "model1.bin")
def predict(word, model):
ixs = torch.tensor(vocab.forward([word])).to(DEVICE)
out = model(ixs)
top = torch.topk(out[0], 8)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
str_predictions = ""
lht = 1.0
for pred_word in list(zip(top_words, top_indices, top_probs)):
if lht - pred_word[2] >= 0:
str_predictions += f"{pred_word[0]}:{pred_word[2]} "
lht -= pred_word[2]
if lht != 1.0:
str_predictions += f":{lht}"
return str_predictions
def generate_predictions(input_file, output_file, model):
with open(output_file, "w") as outputf:
with lzma.open(input_file, mode="rt") as file:
for _, text in enumerate(read_file(file)):
tokens = tokenizer.tokenize(text)
if len(tokens) < 4:
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
2022-04-25 10:36:26 +02:00
else:
2022-05-08 16:29:51 +02:00
prediction = predict(tokens[-1], model)
outputf.write(prediction + "\n")
2022-04-25 10:36:26 +02:00
if __name__ == "__main__":
2022-05-08 16:29:51 +02:00
train()
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
model.load_state_dict(torch.load("model1.bin"))
model.eval()
generate_predictions("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
generate_predictions("test-A/in.tsv.xz", "test-A/out.tsv", model)