2022-05-08 16:29:51 +02:00
|
|
|
import itertools
|
|
|
|
import lzma
|
|
|
|
|
2022-04-25 06:59:21 +02:00
|
|
|
import regex as re
|
2022-05-08 16:29:51 +02:00
|
|
|
import torch
|
|
|
|
from nltk.tokenize import RegexpTokenizer
|
|
|
|
from torch import nn
|
|
|
|
from torch.utils.data import DataLoader, IterableDataset
|
|
|
|
from torchtext.vocab import build_vocab_from_iterator
|
|
|
|
|
|
|
|
VOCAB_SIZE = 40000
|
|
|
|
EMBED_SIZE = 100
|
|
|
|
DEVICE = "cuda"
|
|
|
|
|
|
|
|
tokenizer = RegexpTokenizer(r"\w+")
|
|
|
|
|
|
|
|
|
|
|
|
def read_file(file):
|
|
|
|
for line in file:
|
|
|
|
text = line.split("\t")
|
|
|
|
yield re.sub(
|
|
|
|
r"[^\w\d'\s]+",
|
|
|
|
"",
|
|
|
|
re.sub(" +", " ", text[6].replace("\\n", " ").replace("\n", "").lower()),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_words(line):
|
|
|
|
line = line.rstrip()
|
|
|
|
yield "<s>"
|
|
|
|
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
|
|
|
|
yield m.group(0).lower()
|
|
|
|
yield "</s>"
|
|
|
|
|
|
|
|
|
|
|
|
def get_line(file_path):
|
|
|
|
with lzma.open(file_path, mode="rt") as file:
|
|
|
|
for _, line in enumerate(file):
|
|
|
|
text = line.split("\t")
|
|
|
|
yield get_words(
|
|
|
|
re.sub(
|
|
|
|
r"[^\w\d'\s]+",
|
|
|
|
"",
|
|
|
|
re.sub(
|
|
|
|
" +",
|
|
|
|
" ",
|
|
|
|
" ".join([text[6], text[7]])
|
|
|
|
.replace("\\n", " ")
|
|
|
|
.replace("\n", "")
|
|
|
|
.lower(),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def buidl_vocab():
|
|
|
|
vocab = build_vocab_from_iterator(
|
|
|
|
get_line("train/in.tsv.xz"), max_tokens=VOCAB_SIZE, specials=["<unk>"]
|
2022-04-25 06:59:21 +02:00
|
|
|
)
|
|
|
|
|
2022-05-08 16:29:51 +02:00
|
|
|
vocab.set_default_index(vocab["<unk>"])
|
|
|
|
return vocab
|
|
|
|
|
|
|
|
|
|
|
|
def look_ahead_iterator(gen):
|
|
|
|
prev = None
|
|
|
|
for item in gen:
|
|
|
|
if prev is not None:
|
|
|
|
yield (prev, item)
|
|
|
|
prev = item
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleBigramNeuralLanguageModel(nn.Module):
|
|
|
|
def __init__(self, vocabulary_size, embedding_size):
|
|
|
|
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
|
|
|
self.model = nn.Sequential(
|
|
|
|
nn.Embedding(vocabulary_size, embedding_size),
|
|
|
|
nn.Linear(embedding_size, vocabulary_size),
|
|
|
|
nn.Softmax(),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Bigrams(IterableDataset):
|
|
|
|
def __init__(self, text_file, vocabulary_size):
|
|
|
|
self.vocab = build_vocab_from_iterator(
|
|
|
|
get_line(text_file), max_tokens=vocabulary_size, specials=["<unk>"]
|
|
|
|
)
|
|
|
|
self.vocab.set_default_index(self.vocab["<unk>"])
|
|
|
|
self.vocabulary_size = vocabulary_size
|
|
|
|
self.text_file = text_file
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
return look_ahead_iterator(
|
|
|
|
(
|
|
|
|
self.vocab[t]
|
|
|
|
for t in itertools.chain.from_iterable(get_line(self.text_file))
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
vocab = buidl_vocab()
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
batch_size = 10000
|
|
|
|
|
|
|
|
train_dataset = Bigrams("train/in.tsv.xz", VOCAB_SIZE)
|
|
|
|
|
|
|
|
device = "cuda"
|
|
|
|
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(device)
|
|
|
|
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
|
|
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
|
|
criterion = torch.nn.NLLLoss()
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
step = 0
|
|
|
|
for x, y in train_data_loader:
|
|
|
|
x = x.to(device)
|
|
|
|
y = y.to(device)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
ypredicted = model(x)
|
|
|
|
loss = criterion(torch.log(ypredicted), y)
|
|
|
|
if step % 100 == 0:
|
|
|
|
print(step, loss)
|
|
|
|
step += 1
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
torch.save(model.state_dict(), "model1.bin")
|
|
|
|
|
|
|
|
|
|
|
|
def predict(word, model):
|
|
|
|
ixs = torch.tensor(vocab.forward([word])).to(DEVICE)
|
|
|
|
|
|
|
|
out = model(ixs)
|
|
|
|
top = torch.topk(out[0], 8)
|
|
|
|
top_indices = top.indices.tolist()
|
|
|
|
top_probs = top.values.tolist()
|
|
|
|
top_words = vocab.lookup_tokens(top_indices)
|
|
|
|
str_predictions = ""
|
|
|
|
lht = 1.0
|
|
|
|
for pred_word in list(zip(top_words, top_indices, top_probs)):
|
|
|
|
if lht - pred_word[2] >= 0:
|
|
|
|
str_predictions += f"{pred_word[0]}:{pred_word[2]} "
|
|
|
|
lht -= pred_word[2]
|
|
|
|
if lht != 1.0:
|
|
|
|
str_predictions += f":{lht}"
|
|
|
|
return str_predictions
|
|
|
|
|
|
|
|
|
|
|
|
def generate_predictions(input_file, output_file, model):
|
|
|
|
with open(output_file, "w") as outputf:
|
|
|
|
with lzma.open(input_file, mode="rt") as file:
|
|
|
|
for _, text in enumerate(read_file(file)):
|
|
|
|
tokens = tokenizer.tokenize(text)
|
|
|
|
if len(tokens) < 4:
|
|
|
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
2022-04-25 10:36:26 +02:00
|
|
|
else:
|
2022-05-08 16:29:51 +02:00
|
|
|
prediction = predict(tokens[-1], model)
|
|
|
|
outputf.write(prediction + "\n")
|
2022-04-25 10:36:26 +02:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2022-05-08 16:29:51 +02:00
|
|
|
train()
|
|
|
|
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
|
|
|
model.load_state_dict(torch.load("model1.bin"))
|
|
|
|
model.eval()
|
|
|
|
generate_predictions("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
|
|
|
generate_predictions("test-A/in.tsv.xz", "test-A/out.tsv", model)
|