nn bigram
This commit is contained in:
parent
20cb6b9e97
commit
3349d6ee6b
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
BIN
nn_model.bin
Normal file
BIN
nn_model.bin
Normal file
Binary file not shown.
236
run2.py
236
run2.py
@ -1,76 +1,53 @@
|
||||
import csv
|
||||
import itertools
|
||||
import lzma
|
||||
from os.path import exists
|
||||
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
import torch
|
||||
from nltk.tokenize import RegexpTokenizer
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader, IterableDataset
|
||||
from torch.utils.data import DataLoader
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
|
||||
VOCAB_SIZE = 40000
|
||||
EMBED_SIZE = 100
|
||||
DEVICE = "cuda"
|
||||
|
||||
tokenizer = RegexpTokenizer(r"\w+")
|
||||
IN_INPUT_PATH = "train/in.tsv.xz"
|
||||
IN_OUTPUT_PATH = "train/expected.tsv"
|
||||
VOCAB_SIZE = 30000
|
||||
EMBED_SIZE = 150
|
||||
BATCH_SIZE = 8000
|
||||
DEV_PATH = "dev-0/"
|
||||
TEST_PATH = "test-A/"
|
||||
DEVICE = "cpu"
|
||||
|
||||
|
||||
def read_file(file):
|
||||
for line in file:
|
||||
text = line.split("\t")
|
||||
yield re.sub(
|
||||
r"[^\w\d'\s]+",
|
||||
"",
|
||||
re.sub(" +", " ", text[6].replace("\\n", " ").replace("\n", "").lower()),
|
||||
)
|
||||
def clean(text):
|
||||
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
||||
return re.sub(r"\p{P}", "", text)
|
||||
|
||||
|
||||
def get_words(line):
|
||||
def get_words_from_line(line, specials=True):
|
||||
line = line.rstrip()
|
||||
yield "<s>"
|
||||
if specials:
|
||||
yield "<s>"
|
||||
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
|
||||
yield m.group(0).lower()
|
||||
yield "</s>"
|
||||
if specials:
|
||||
yield "</s>"
|
||||
|
||||
|
||||
def get_line(file_path):
|
||||
with lzma.open(file_path, mode="rt") as file:
|
||||
for _, line in enumerate(file):
|
||||
text = line.split("\t")
|
||||
yield get_words(
|
||||
re.sub(
|
||||
r"[^\w\d'\s]+",
|
||||
"",
|
||||
re.sub(
|
||||
" +",
|
||||
" ",
|
||||
" ".join([text[6], text[7]])
|
||||
.replace("\\n", " ")
|
||||
.replace("\n", "")
|
||||
.lower(),
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def buidl_vocab():
|
||||
vocab = build_vocab_from_iterator(
|
||||
get_line("train/in.tsv.xz"), max_tokens=VOCAB_SIZE, specials=["<unk>"]
|
||||
)
|
||||
|
||||
vocab.set_default_index(vocab["<unk>"])
|
||||
return vocab
|
||||
def get_word_lines_from_data(d):
|
||||
for line in d:
|
||||
yield get_words_from_line(line)
|
||||
|
||||
|
||||
def look_ahead_iterator(gen):
|
||||
prev = None
|
||||
w1 = None
|
||||
for item in gen:
|
||||
if prev is not None:
|
||||
yield (prev, item)
|
||||
prev = item
|
||||
if w1 is not None:
|
||||
yield (w1, item)
|
||||
w1 = item
|
||||
|
||||
|
||||
class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||
class SimpleBigramNeuralLanguageModel(torch.nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
@ -83,89 +60,128 @@ class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||
return self.model(x)
|
||||
|
||||
|
||||
class Bigrams(IterableDataset):
|
||||
def __init__(self, text_file, vocabulary_size):
|
||||
class Bigrams(torch.utils.data.IterableDataset):
|
||||
def __init__(self, data, vocabulary_size):
|
||||
self.vocab = build_vocab_from_iterator(
|
||||
get_line(text_file), max_tokens=vocabulary_size, specials=["<unk>"]
|
||||
get_word_lines_from_data(data),
|
||||
max_tokens=vocabulary_size,
|
||||
specials=["<unk>"],
|
||||
)
|
||||
self.vocab.set_default_index(self.vocab["<unk>"])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.text_file = text_file
|
||||
self.data = data
|
||||
|
||||
def __iter__(self):
|
||||
return look_ahead_iterator(
|
||||
(
|
||||
self.vocab[t]
|
||||
for t in itertools.chain.from_iterable(get_line(self.text_file))
|
||||
for t in itertools.chain.from_iterable(
|
||||
get_word_lines_from_data(self.data)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
vocab = buidl_vocab()
|
||||
def get_dataset():
|
||||
X_train = pd.read_csv(
|
||||
IN_INPUT_PATH,
|
||||
sep="\t",
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
nrows=200000,
|
||||
on_bad_lines="skip",
|
||||
encoding="UTF-8",
|
||||
)
|
||||
Y_train = pd.read_csv(
|
||||
IN_OUTPUT_PATH,
|
||||
sep="\t",
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
nrows=200000,
|
||||
on_bad_lines="skip",
|
||||
encoding="UTF-8",
|
||||
)
|
||||
|
||||
X_train = X_train[[6, 7]]
|
||||
X_train = pd.concat([X_train, Y_train], axis=1)
|
||||
X_train = X_train[6] + X_train[0] + X_train[7]
|
||||
X_train = X_train.apply(clean)
|
||||
return Bigrams(X_train, VOCAB_SIZE)
|
||||
|
||||
|
||||
def train():
|
||||
batch_size = 10000
|
||||
|
||||
train_dataset = Bigrams("train/in.tsv.xz", VOCAB_SIZE)
|
||||
|
||||
device = "cuda"
|
||||
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(device)
|
||||
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for x, y in train_data_loader:
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
torch.save(model.state_dict(), "model1.bin")
|
||||
dataset = get_dataset()
|
||||
|
||||
|
||||
def predict(word, model):
|
||||
ixs = torch.tensor(vocab.forward([word])).to(DEVICE)
|
||||
def get_model():
|
||||
|
||||
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
||||
|
||||
if not exists("nn_model.bin"):
|
||||
data = DataLoader(dataset, batch_size=BATCH_SIZE)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for i in range(2):
|
||||
for x, y in data:
|
||||
x = x.to(DEVICE)
|
||||
y = y.to(DEVICE)
|
||||
optimizer.zero_grad()
|
||||
y_predicted = model(x)
|
||||
loss = criterion(torch.log(y_predicted), y)
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
torch.save(model.state_dict(), "nn_model.bin")
|
||||
else:
|
||||
model.load_state_dict(torch.load("nn_model.bin"))
|
||||
return model
|
||||
|
||||
|
||||
vocab = dataset.vocab
|
||||
model = get_model()
|
||||
|
||||
|
||||
def predict(ws):
|
||||
ixs = torch.tensor(vocab.forward(ws)).to(DEVICE)
|
||||
out = model(ixs)
|
||||
top = torch.topk(out[0], 8)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
str_predictions = ""
|
||||
lht = 1.0
|
||||
for pred_word in list(zip(top_words, top_indices, top_probs)):
|
||||
if lht - pred_word[2] >= 0:
|
||||
str_predictions += f"{pred_word[0]}:{pred_word[2]} "
|
||||
lht -= pred_word[2]
|
||||
if lht != 1.0:
|
||||
str_predictions += f":{lht}"
|
||||
return str_predictions
|
||||
pred_str = ""
|
||||
for word, prob in list(zip(top_words, top_probs)):
|
||||
pred_str += f"{word}:{prob} "
|
||||
return pred_str
|
||||
|
||||
|
||||
def generate_predictions(input_file, output_file, model):
|
||||
with open(output_file, "w") as outputf:
|
||||
with lzma.open(input_file, mode="rt") as file:
|
||||
for _, text in enumerate(read_file(file)):
|
||||
tokens = tokenizer.tokenize(text)
|
||||
if len(tokens) < 4:
|
||||
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||
else:
|
||||
prediction = predict(tokens[-1], model)
|
||||
outputf.write(prediction + "\n")
|
||||
def predict_input(file):
|
||||
X_test = pd.read_csv(
|
||||
f"{file}/in.tsv.xz",
|
||||
sep="\t",
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
on_bad_lines="skip",
|
||||
encoding="UTF-8",
|
||||
)[6]
|
||||
X_test = X_test.apply(clean)
|
||||
with open(f"{file}/out.tsv", "w+", encoding="UTF-8") as f:
|
||||
for row in X_test:
|
||||
before = None
|
||||
for before in get_words_from_line(clean(str(row)), False):
|
||||
pass
|
||||
before = [before]
|
||||
if len(before) < 1:
|
||||
pred_str = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||
else:
|
||||
pred_str = predict(before)
|
||||
pred_str = pred_str.strip()
|
||||
f.write(pred_str + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
||||
model.load_state_dict(torch.load("model1.bin"))
|
||||
model.eval()
|
||||
generate_predictions("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
||||
generate_predictions("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
||||
predict_input(DEV_PATH)
|
||||
predict_input(TEST_PATH)
|
||||
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user