nn bigram
This commit is contained in:
parent
20cb6b9e97
commit
3349d6ee6b
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
BIN
nn_model.bin
Normal file
BIN
nn_model.bin
Normal file
Binary file not shown.
236
run2.py
236
run2.py
@ -1,76 +1,53 @@
|
|||||||
|
import csv
|
||||||
import itertools
|
import itertools
|
||||||
import lzma
|
from os.path import exists
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
import regex as re
|
import regex as re
|
||||||
import torch
|
import torch
|
||||||
from nltk.tokenize import RegexpTokenizer
|
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.utils.data import DataLoader, IterableDataset
|
from torch.utils.data import DataLoader
|
||||||
from torchtext.vocab import build_vocab_from_iterator
|
from torchtext.vocab import build_vocab_from_iterator
|
||||||
|
|
||||||
VOCAB_SIZE = 40000
|
IN_INPUT_PATH = "train/in.tsv.xz"
|
||||||
EMBED_SIZE = 100
|
IN_OUTPUT_PATH = "train/expected.tsv"
|
||||||
DEVICE = "cuda"
|
VOCAB_SIZE = 30000
|
||||||
|
EMBED_SIZE = 150
|
||||||
tokenizer = RegexpTokenizer(r"\w+")
|
BATCH_SIZE = 8000
|
||||||
|
DEV_PATH = "dev-0/"
|
||||||
|
TEST_PATH = "test-A/"
|
||||||
|
DEVICE = "cpu"
|
||||||
|
|
||||||
|
|
||||||
def read_file(file):
|
def clean(text):
|
||||||
for line in file:
|
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
||||||
text = line.split("\t")
|
return re.sub(r"\p{P}", "", text)
|
||||||
yield re.sub(
|
|
||||||
r"[^\w\d'\s]+",
|
|
||||||
"",
|
|
||||||
re.sub(" +", " ", text[6].replace("\\n", " ").replace("\n", "").lower()),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_words(line):
|
def get_words_from_line(line, specials=True):
|
||||||
line = line.rstrip()
|
line = line.rstrip()
|
||||||
yield "<s>"
|
if specials:
|
||||||
|
yield "<s>"
|
||||||
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
|
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
|
||||||
yield m.group(0).lower()
|
yield m.group(0).lower()
|
||||||
yield "</s>"
|
if specials:
|
||||||
|
yield "</s>"
|
||||||
|
|
||||||
|
|
||||||
def get_line(file_path):
|
def get_word_lines_from_data(d):
|
||||||
with lzma.open(file_path, mode="rt") as file:
|
for line in d:
|
||||||
for _, line in enumerate(file):
|
yield get_words_from_line(line)
|
||||||
text = line.split("\t")
|
|
||||||
yield get_words(
|
|
||||||
re.sub(
|
|
||||||
r"[^\w\d'\s]+",
|
|
||||||
"",
|
|
||||||
re.sub(
|
|
||||||
" +",
|
|
||||||
" ",
|
|
||||||
" ".join([text[6], text[7]])
|
|
||||||
.replace("\\n", " ")
|
|
||||||
.replace("\n", "")
|
|
||||||
.lower(),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def buidl_vocab():
|
|
||||||
vocab = build_vocab_from_iterator(
|
|
||||||
get_line("train/in.tsv.xz"), max_tokens=VOCAB_SIZE, specials=["<unk>"]
|
|
||||||
)
|
|
||||||
|
|
||||||
vocab.set_default_index(vocab["<unk>"])
|
|
||||||
return vocab
|
|
||||||
|
|
||||||
|
|
||||||
def look_ahead_iterator(gen):
|
def look_ahead_iterator(gen):
|
||||||
prev = None
|
w1 = None
|
||||||
for item in gen:
|
for item in gen:
|
||||||
if prev is not None:
|
if w1 is not None:
|
||||||
yield (prev, item)
|
yield (w1, item)
|
||||||
prev = item
|
w1 = item
|
||||||
|
|
||||||
|
|
||||||
class SimpleBigramNeuralLanguageModel(nn.Module):
|
class SimpleBigramNeuralLanguageModel(torch.nn.Module):
|
||||||
def __init__(self, vocabulary_size, embedding_size):
|
def __init__(self, vocabulary_size, embedding_size):
|
||||||
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
@ -83,89 +60,128 @@ class SimpleBigramNeuralLanguageModel(nn.Module):
|
|||||||
return self.model(x)
|
return self.model(x)
|
||||||
|
|
||||||
|
|
||||||
class Bigrams(IterableDataset):
|
class Bigrams(torch.utils.data.IterableDataset):
|
||||||
def __init__(self, text_file, vocabulary_size):
|
def __init__(self, data, vocabulary_size):
|
||||||
self.vocab = build_vocab_from_iterator(
|
self.vocab = build_vocab_from_iterator(
|
||||||
get_line(text_file), max_tokens=vocabulary_size, specials=["<unk>"]
|
get_word_lines_from_data(data),
|
||||||
|
max_tokens=vocabulary_size,
|
||||||
|
specials=["<unk>"],
|
||||||
)
|
)
|
||||||
self.vocab.set_default_index(self.vocab["<unk>"])
|
self.vocab.set_default_index(self.vocab["<unk>"])
|
||||||
self.vocabulary_size = vocabulary_size
|
self.vocabulary_size = vocabulary_size
|
||||||
self.text_file = text_file
|
self.data = data
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
return look_ahead_iterator(
|
return look_ahead_iterator(
|
||||||
(
|
(
|
||||||
self.vocab[t]
|
self.vocab[t]
|
||||||
for t in itertools.chain.from_iterable(get_line(self.text_file))
|
for t in itertools.chain.from_iterable(
|
||||||
|
get_word_lines_from_data(self.data)
|
||||||
|
)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
vocab = buidl_vocab()
|
def get_dataset():
|
||||||
|
X_train = pd.read_csv(
|
||||||
|
IN_INPUT_PATH,
|
||||||
|
sep="\t",
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=200000,
|
||||||
|
on_bad_lines="skip",
|
||||||
|
encoding="UTF-8",
|
||||||
|
)
|
||||||
|
Y_train = pd.read_csv(
|
||||||
|
IN_OUTPUT_PATH,
|
||||||
|
sep="\t",
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=200000,
|
||||||
|
on_bad_lines="skip",
|
||||||
|
encoding="UTF-8",
|
||||||
|
)
|
||||||
|
|
||||||
|
X_train = X_train[[6, 7]]
|
||||||
|
X_train = pd.concat([X_train, Y_train], axis=1)
|
||||||
|
X_train = X_train[6] + X_train[0] + X_train[7]
|
||||||
|
X_train = X_train.apply(clean)
|
||||||
|
return Bigrams(X_train, VOCAB_SIZE)
|
||||||
|
|
||||||
|
|
||||||
def train():
|
dataset = get_dataset()
|
||||||
batch_size = 10000
|
|
||||||
|
|
||||||
train_dataset = Bigrams("train/in.tsv.xz", VOCAB_SIZE)
|
|
||||||
|
|
||||||
device = "cuda"
|
|
||||||
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(device)
|
|
||||||
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
|
|
||||||
optimizer = torch.optim.Adam(model.parameters())
|
|
||||||
criterion = torch.nn.NLLLoss()
|
|
||||||
|
|
||||||
model.train()
|
|
||||||
step = 0
|
|
||||||
for x, y in train_data_loader:
|
|
||||||
x = x.to(device)
|
|
||||||
y = y.to(device)
|
|
||||||
optimizer.zero_grad()
|
|
||||||
ypredicted = model(x)
|
|
||||||
loss = criterion(torch.log(ypredicted), y)
|
|
||||||
if step % 100 == 0:
|
|
||||||
print(step, loss)
|
|
||||||
step += 1
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
torch.save(model.state_dict(), "model1.bin")
|
|
||||||
|
|
||||||
|
|
||||||
def predict(word, model):
|
def get_model():
|
||||||
ixs = torch.tensor(vocab.forward([word])).to(DEVICE)
|
|
||||||
|
|
||||||
|
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
||||||
|
|
||||||
|
if not exists("nn_model.bin"):
|
||||||
|
data = DataLoader(dataset, batch_size=BATCH_SIZE)
|
||||||
|
optimizer = torch.optim.Adam(model.parameters())
|
||||||
|
criterion = torch.nn.NLLLoss()
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
step = 0
|
||||||
|
for i in range(2):
|
||||||
|
for x, y in data:
|
||||||
|
x = x.to(DEVICE)
|
||||||
|
y = y.to(DEVICE)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
y_predicted = model(x)
|
||||||
|
loss = criterion(torch.log(y_predicted), y)
|
||||||
|
if step % 100 == 0:
|
||||||
|
print(step, loss)
|
||||||
|
step += 1
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
torch.save(model.state_dict(), "nn_model.bin")
|
||||||
|
else:
|
||||||
|
model.load_state_dict(torch.load("nn_model.bin"))
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
vocab = dataset.vocab
|
||||||
|
model = get_model()
|
||||||
|
|
||||||
|
|
||||||
|
def predict(ws):
|
||||||
|
ixs = torch.tensor(vocab.forward(ws)).to(DEVICE)
|
||||||
out = model(ixs)
|
out = model(ixs)
|
||||||
top = torch.topk(out[0], 8)
|
top = torch.topk(out[0], 8)
|
||||||
top_indices = top.indices.tolist()
|
top_indices = top.indices.tolist()
|
||||||
top_probs = top.values.tolist()
|
top_probs = top.values.tolist()
|
||||||
top_words = vocab.lookup_tokens(top_indices)
|
top_words = vocab.lookup_tokens(top_indices)
|
||||||
str_predictions = ""
|
pred_str = ""
|
||||||
lht = 1.0
|
for word, prob in list(zip(top_words, top_probs)):
|
||||||
for pred_word in list(zip(top_words, top_indices, top_probs)):
|
pred_str += f"{word}:{prob} "
|
||||||
if lht - pred_word[2] >= 0:
|
return pred_str
|
||||||
str_predictions += f"{pred_word[0]}:{pred_word[2]} "
|
|
||||||
lht -= pred_word[2]
|
|
||||||
if lht != 1.0:
|
|
||||||
str_predictions += f":{lht}"
|
|
||||||
return str_predictions
|
|
||||||
|
|
||||||
|
|
||||||
def generate_predictions(input_file, output_file, model):
|
def predict_input(file):
|
||||||
with open(output_file, "w") as outputf:
|
X_test = pd.read_csv(
|
||||||
with lzma.open(input_file, mode="rt") as file:
|
f"{file}/in.tsv.xz",
|
||||||
for _, text in enumerate(read_file(file)):
|
sep="\t",
|
||||||
tokens = tokenizer.tokenize(text)
|
header=None,
|
||||||
if len(tokens) < 4:
|
quoting=csv.QUOTE_NONE,
|
||||||
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
on_bad_lines="skip",
|
||||||
else:
|
encoding="UTF-8",
|
||||||
prediction = predict(tokens[-1], model)
|
)[6]
|
||||||
outputf.write(prediction + "\n")
|
X_test = X_test.apply(clean)
|
||||||
|
with open(f"{file}/out.tsv", "w+", encoding="UTF-8") as f:
|
||||||
|
for row in X_test:
|
||||||
|
before = None
|
||||||
|
for before in get_words_from_line(clean(str(row)), False):
|
||||||
|
pass
|
||||||
|
before = [before]
|
||||||
|
if len(before) < 1:
|
||||||
|
pred_str = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||||
|
else:
|
||||||
|
pred_str = predict(before)
|
||||||
|
pred_str = pred_str.strip()
|
||||||
|
f.write(pred_str + "\n")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
predict_input(DEV_PATH)
|
||||||
train()
|
predict_input(TEST_PATH)
|
||||||
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
|
||||||
model.load_state_dict(torch.load("model1.bin"))
|
|
||||||
model.eval()
|
|
||||||
generate_predictions("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
|
||||||
generate_predictions("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
|
||||||
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user