test
This commit is contained in:
parent
77852bcc1e
commit
b03b6502e3
241
run2.py
241
run2.py
@ -1,104 +1,171 @@
|
|||||||
import pandas as pd
|
import itertools
|
||||||
import csv
|
import lzma
|
||||||
|
|
||||||
import regex as re
|
import regex as re
|
||||||
import kenlm
|
import torch
|
||||||
from english_words import english_words_alpha_set
|
from nltk.tokenize import RegexpTokenizer
|
||||||
from nltk import word_tokenize
|
from torch import nn
|
||||||
from math import log10
|
from torch.utils.data import DataLoader, IterableDataset
|
||||||
from pathlib import Path
|
from torchtext.vocab import build_vocab_from_iterator
|
||||||
import os
|
|
||||||
|
VOCAB_SIZE = 40000
|
||||||
|
EMBED_SIZE = 100
|
||||||
|
DEVICE = "cuda"
|
||||||
|
|
||||||
|
tokenizer = RegexpTokenizer(r"\w+")
|
||||||
|
|
||||||
|
|
||||||
KENLM_BUILD_PATH = Path("/home/bartek/Pulpit/challenging-america-word-gap-prediction/kenlm/build")
|
def read_file(file):
|
||||||
KENLM_LMPLZ_PATH = KENLM_BUILD_PATH / "bin" / "lmplz"
|
for line in file:
|
||||||
KENLM_BUILD_BINARY_PATH = KENLM_BUILD_PATH / "bin" / "build_binary"
|
text = line.split("\t")
|
||||||
SUDO_PASSWORD = ""
|
yield re.sub(
|
||||||
PREDICTION = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
r"[^\w\d'\s]+",
|
||||||
|
"",
|
||||||
|
re.sub(" +", " ", text[6].replace("\\n", " ").replace("\n", "").lower()),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def clean(text):
|
def get_words(line):
|
||||||
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
line = line.rstrip()
|
||||||
return re.sub(r"\p{P}", "", text)
|
yield "<s>"
|
||||||
|
for m in re.finditer(r"[\p{L}0-9\*]+|\p{P}+", line):
|
||||||
|
yield m.group(0).lower()
|
||||||
|
yield "</s>"
|
||||||
|
|
||||||
|
|
||||||
def create_train_data():
|
def get_line(file_path):
|
||||||
data = pd.read_csv(
|
with lzma.open(file_path, mode="rt") as file:
|
||||||
"train/in.tsv.xz",
|
for _, line in enumerate(file):
|
||||||
sep="\t",
|
text = line.split("\t")
|
||||||
error_bad_lines=False,
|
yield get_words(
|
||||||
header=None,
|
re.sub(
|
||||||
quoting=csv.QUOTE_NONE,
|
r"[^\w\d'\s]+",
|
||||||
nrows=10000
|
"",
|
||||||
)
|
re.sub(
|
||||||
train_labels = pd.read_csv(
|
" +",
|
||||||
"train/expected.tsv",
|
" ",
|
||||||
sep="\t",
|
" ".join([text[6], text[7]])
|
||||||
error_bad_lines=False,
|
.replace("\\n", " ")
|
||||||
header=None,
|
.replace("\n", "")
|
||||||
quoting=csv.QUOTE_NONE,
|
.lower(),
|
||||||
nrows=10000
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def buidl_vocab():
|
||||||
|
vocab = build_vocab_from_iterator(
|
||||||
|
get_line("train/in.tsv.xz"), max_tokens=VOCAB_SIZE, specials=["<unk>"]
|
||||||
)
|
)
|
||||||
|
|
||||||
train_data = data[[6, 7]]
|
vocab.set_default_index(vocab["<unk>"])
|
||||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
return vocab
|
||||||
|
|
||||||
return train_data[6] + train_data[0] + train_data[7]
|
|
||||||
|
|
||||||
|
|
||||||
def create_train_file(filename="train.txt"):
|
def look_ahead_iterator(gen):
|
||||||
with open(filename, "w") as f:
|
prev = None
|
||||||
for line in create_train_data():
|
for item in gen:
|
||||||
f.write(clean(line) + "\n")
|
if prev is not None:
|
||||||
|
yield (prev, item)
|
||||||
|
prev = item
|
||||||
|
|
||||||
def train_model():
|
|
||||||
lmplz_command = f"{KENLM_LMPLZ_PATH} -o 4 < train.txt > model.arpa"
|
|
||||||
build_binary_command = f"{KENLM_BUILD_BINARY_PATH} model.arpa model.binary"
|
|
||||||
os.system('echo %s|sudo -S %s' % (SUDO_PASSWORD, lmplz_command))
|
|
||||||
os.system('echo %s|sudo -S %s' % (SUDO_PASSWORD, build_binary_command))
|
|
||||||
|
|
||||||
|
|
||||||
def predict(model, before, after):
|
class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||||
prob = 0.0
|
def __init__(self, vocabulary_size, embedding_size):
|
||||||
best = []
|
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||||
for word in english_words_alpha_set:
|
self.model = nn.Sequential(
|
||||||
text = ' '.join([before, word, after])
|
nn.Embedding(vocabulary_size, embedding_size),
|
||||||
text_score = model.score(text, bos=False, eos=False)
|
nn.Linear(embedding_size, vocabulary_size),
|
||||||
if len(best) < 12:
|
nn.Softmax(),
|
||||||
best.append((word, text_score))
|
)
|
||||||
else:
|
|
||||||
worst_score = None
|
def forward(self, x):
|
||||||
for score in best:
|
return self.model(x)
|
||||||
if not worst_score:
|
|
||||||
worst_score = score
|
|
||||||
|
class Bigrams(IterableDataset):
|
||||||
|
def __init__(self, text_file, vocabulary_size):
|
||||||
|
self.vocab = build_vocab_from_iterator(
|
||||||
|
get_line(text_file), max_tokens=vocabulary_size, specials=["<unk>"]
|
||||||
|
)
|
||||||
|
self.vocab.set_default_index(self.vocab["<unk>"])
|
||||||
|
self.vocabulary_size = vocabulary_size
|
||||||
|
self.text_file = text_file
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return look_ahead_iterator(
|
||||||
|
(
|
||||||
|
self.vocab[t]
|
||||||
|
for t in itertools.chain.from_iterable(get_line(self.text_file))
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
vocab = buidl_vocab()
|
||||||
|
|
||||||
|
|
||||||
|
def train():
|
||||||
|
batch_size = 10000
|
||||||
|
|
||||||
|
train_dataset = Bigrams("train/in.tsv.xz", VOCAB_SIZE)
|
||||||
|
|
||||||
|
device = "cuda"
|
||||||
|
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(device)
|
||||||
|
train_data_loader = DataLoader(train_dataset, batch_size=batch_size)
|
||||||
|
optimizer = torch.optim.Adam(model.parameters())
|
||||||
|
criterion = torch.nn.NLLLoss()
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
step = 0
|
||||||
|
for x, y in train_data_loader:
|
||||||
|
x = x.to(device)
|
||||||
|
y = y.to(device)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
ypredicted = model(x)
|
||||||
|
loss = criterion(torch.log(ypredicted), y)
|
||||||
|
if step % 100 == 0:
|
||||||
|
print(step, loss)
|
||||||
|
step += 1
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
torch.save(model.state_dict(), "model1.bin")
|
||||||
|
|
||||||
|
|
||||||
|
def predict(word, model):
|
||||||
|
ixs = torch.tensor(vocab.forward([word])).to(DEVICE)
|
||||||
|
|
||||||
|
out = model(ixs)
|
||||||
|
top = torch.topk(out[0], 8)
|
||||||
|
top_indices = top.indices.tolist()
|
||||||
|
top_probs = top.values.tolist()
|
||||||
|
top_words = vocab.lookup_tokens(top_indices)
|
||||||
|
str_predictions = ""
|
||||||
|
lht = 1.0
|
||||||
|
for pred_word in list(zip(top_words, top_indices, top_probs)):
|
||||||
|
if lht - pred_word[2] >= 0:
|
||||||
|
str_predictions += f"{pred_word[0]}:{pred_word[2]} "
|
||||||
|
lht -= pred_word[2]
|
||||||
|
if lht != 1.0:
|
||||||
|
str_predictions += f":{lht}"
|
||||||
|
return str_predictions
|
||||||
|
|
||||||
|
|
||||||
|
def generate_predictions(input_file, output_file, model):
|
||||||
|
with open(output_file, "w") as outputf:
|
||||||
|
with lzma.open(input_file, mode="rt") as file:
|
||||||
|
for _, text in enumerate(read_file(file)):
|
||||||
|
tokens = tokenizer.tokenize(text)
|
||||||
|
if len(tokens) < 4:
|
||||||
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
else:
|
else:
|
||||||
if worst_score[1] > score[1]:
|
prediction = predict(tokens[-1], model)
|
||||||
worst_score = score
|
outputf.write(prediction + "\n")
|
||||||
if worst_score[1] < text_score:
|
|
||||||
best.remove(worst_score)
|
|
||||||
best.append((word, text_score))
|
|
||||||
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
|
||||||
pred_str = ''
|
|
||||||
for word, prob in probs:
|
|
||||||
pred_str += f'{word}:{prob} '
|
|
||||||
pred_str += f':{log10(0.99)}'
|
|
||||||
return pred_str
|
|
||||||
|
|
||||||
def make_prediction(model, path, result_path):
|
|
||||||
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
|
||||||
with open(result_path, 'w', encoding='utf-8') as file_out:
|
|
||||||
for _, row in data.iterrows():
|
|
||||||
before, after = word_tokenize(clean(str(row[6]))), word_tokenize(clean(str(row[7])))
|
|
||||||
if len(before) < 2 or len(after) < 2:
|
|
||||||
pred = PREDICTION
|
|
||||||
else:
|
|
||||||
pred = predict(model, before[-1], after[0])
|
|
||||||
file_out.write(pred + '\n')
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
create_train_file()
|
train()
|
||||||
train_model()
|
model = SimpleBigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE).to(DEVICE)
|
||||||
model = kenlm.Model('model.arpa')
|
model.load_state_dict(torch.load("model1.bin"))
|
||||||
make_prediction(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
|
model.eval()
|
||||||
make_prediction(model, "test-A/in.tsv.xz", "test-A/out.tsv")
|
generate_predictions("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
||||||
|
generate_predictions("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
||||||
|
Loading…
Reference in New Issue
Block a user