smoothing fix
This commit is contained in:
parent
e49b8826cb
commit
fbd5544e6e
21036
dev-0/out.tsv
21036
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
87
run.py
87
run.py
@ -1,53 +1,41 @@
|
||||
from ast import Mod
|
||||
import pandas as pd
|
||||
import csv
|
||||
import regex as re
|
||||
from nltk import bigrams, word_tokenize
|
||||
from collections import Counter, defaultdict
|
||||
import string
|
||||
import unicodedata
|
||||
|
||||
data = pd.read_csv(
|
||||
"train/in.tsv.xz",
|
||||
sep="\t",
|
||||
error_bad_lines=False,
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
train_labels = pd.read_csv(
|
||||
"train/expected.tsv",
|
||||
sep="\t",
|
||||
error_bad_lines=False,
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
|
||||
train_data = data[[6, 7]]
|
||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||
|
||||
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
||||
|
||||
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||
|
||||
|
||||
def clean(text):
|
||||
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
||||
return re.sub(r"\p{P}", "", text)
|
||||
|
||||
def train_model(data):
|
||||
class Model:
|
||||
def __init__(self, alpha):
|
||||
self.alpha = alpha
|
||||
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||
self.vocab = set()
|
||||
|
||||
def train(self, data):
|
||||
for _, row in data.iterrows():
|
||||
words = word_tokenize(clean(row["final"]))
|
||||
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
|
||||
if w1 and w2:
|
||||
model[w1][w2] += 1
|
||||
for w1 in model:
|
||||
total_count = float(sum(model[w1].values()))
|
||||
for w2 in model[w1]:
|
||||
model[w1][w2] /= total_count
|
||||
self.model[w1][w2] += 1
|
||||
self.vocab.add(w1)
|
||||
self.vocab.add(w2)
|
||||
|
||||
for w1 in self.model:
|
||||
total_count = float(sum(self.model[w1].values()))
|
||||
denominator = total_count + self.alpha * len(self.vocab)
|
||||
for w2 in self.model[w1]:
|
||||
nominator = self.model[w1][w2] + self.alpha
|
||||
self.model[w1][w2] = nominator / denominator
|
||||
|
||||
|
||||
def predict(word):
|
||||
predictions = dict(model[word])
|
||||
most_common = dict(Counter(predictions).most_common(5))
|
||||
def _predict(self, word):
|
||||
predictions = dict(self.model[word])
|
||||
most_common = dict(Counter(predictions).most_common(6))
|
||||
|
||||
total_prob = 0.0
|
||||
str_prediction = ""
|
||||
@ -67,7 +55,7 @@ def predict(word):
|
||||
return str_prediction
|
||||
|
||||
|
||||
def predict_data(read_path, save_path):
|
||||
def predict(self, read_path, save_path):
|
||||
data = pd.read_csv(
|
||||
read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE
|
||||
)
|
||||
@ -77,10 +65,33 @@ def predict_data(read_path, save_path):
|
||||
if len(words) < 3:
|
||||
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||
else:
|
||||
prediction = predict(words[-1])
|
||||
prediction = self._predict(words[-1])
|
||||
file.write(prediction + "\n")
|
||||
|
||||
|
||||
train_model(train_data)
|
||||
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
predict_data("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
if __name__ == '__main__':
|
||||
|
||||
data = pd.read_csv(
|
||||
"train/in.tsv.xz",
|
||||
sep="\t",
|
||||
error_bad_lines=False,
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
train_labels = pd.read_csv(
|
||||
"train/expected.tsv",
|
||||
sep="\t",
|
||||
error_bad_lines=False,
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
)
|
||||
|
||||
train_data = data[[6, 7]]
|
||||
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||
|
||||
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
||||
|
||||
model = Model(0.0001)
|
||||
model.train(train_data)
|
||||
model.predict("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
model.predict("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user