import pandas as pd import csv import regex as re from nltk import bigrams, word_tokenize from collections import Counter, defaultdict import string import unicodedata data = pd.read_csv( "train/in.tsv.xz", sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, ) train_labels = pd.read_csv( "train/expected.tsv", sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, ) train_data = data[[6, 7]] train_data = pd.concat([train_data, train_labels], axis=1) train_data["final"] = train_data[6] + train_data[0] + train_data[7] model = defaultdict(lambda: defaultdict(lambda: 0)) def clean(text): text = str(text) text = ( unicodedata.normalize("NFKD", text) .encode("ascii", "ignore") .decode("utf-8", "ignore") ) text = re.sub("<.*?>", " ", text) text = text.translate(str.maketrans(" ", " ", string.punctuation)) text = re.sub("[^a-zA-Z]", " ", text) text = re.sub("\n", " ", text) text = text.lower() text = " ".join(text.split()) return text def train_model(data): for _, row in data.iterrows(): words = word_tokenize(clean(row["final"])) for w1, w2 in bigrams(words, pad_left=True, pad_right=True): if w1 and w2: model[w1][w2] += 1 for w1 in model: total_count = float(sum(model[w1].values())) for w2 in model[w1]: model[w1][w2] /= total_count def predict(word): predictions = dict(model[word]) most_common = dict(Counter(predictions).most_common(5)) total_prob = 0.0 str_prediction = "" for word, prob in most_common.items(): total_prob += prob str_prediction += f"{word}:{prob} " if not total_prob: return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" if 1 - total_prob >= 0.01: str_prediction += f":{1-total_prob}" else: str_prediction += f":0.01" return str_prediction def predict_data(read_path, save_path): data = pd.read_csv( read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE ) with open(save_path, "w") as file: for _, row in data.iterrows(): words = word_tokenize(clean(row[6])) if len(words) < 3: prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" else: prediction = predict(words[-1]) file.write(prediction + "\n") train_model(train_data) predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv") predict_data("test-A/in.tsv.xz", "test-A/out.tsv")