104 lines
3.4 KiB
Python
104 lines
3.4 KiB
Python
import pandas as pd
|
|
import csv
|
|
import regex as re
|
|
import kenlm
|
|
from english_words import english_words_alpha_set
|
|
from nltk import word_tokenize
|
|
from math import log10
|
|
from pathlib import Path
|
|
import os
|
|
|
|
|
|
KENLM_BUILD_PATH = Path("/home/bartek/Pulpit/challenging-america-word-gap-prediction/kenlm/build")
|
|
KENLM_LMPLZ_PATH = KENLM_BUILD_PATH / "bin" / "lmplz"
|
|
KENLM_BUILD_BINARY_PATH = KENLM_BUILD_PATH / "bin" / "build_binary"
|
|
SUDO_PASSWORD = ""
|
|
PREDICTION = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
|
|
|
|
|
def clean(text):
|
|
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
|
return re.sub(r"\p{P}", "", text)
|
|
|
|
|
|
def create_train_data():
|
|
data = pd.read_csv(
|
|
"train/in.tsv.xz",
|
|
sep="\t",
|
|
error_bad_lines=False,
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
nrows=10000
|
|
)
|
|
train_labels = pd.read_csv(
|
|
"train/expected.tsv",
|
|
sep="\t",
|
|
error_bad_lines=False,
|
|
header=None,
|
|
quoting=csv.QUOTE_NONE,
|
|
nrows=10000
|
|
)
|
|
|
|
train_data = data[[6, 7]]
|
|
train_data = pd.concat([train_data, train_labels], axis=1)
|
|
|
|
return train_data[6] + train_data[0] + train_data[7]
|
|
|
|
|
|
def create_train_file(filename="train.txt"):
|
|
with open(filename, "w") as f:
|
|
for line in create_train_data():
|
|
f.write(clean(line) + "\n")
|
|
|
|
|
|
def train_model():
|
|
lmplz_command = f"{KENLM_LMPLZ_PATH} -o 4 < train.txt > model.arpa"
|
|
build_binary_command = f"{KENLM_BUILD_BINARY_PATH} model.arpa model.binary"
|
|
os.system('echo %s|sudo -S %s' % (SUDO_PASSWORD, lmplz_command))
|
|
os.system('echo %s|sudo -S %s' % (SUDO_PASSWORD, build_binary_command))
|
|
|
|
|
|
def predict(model, before, after):
|
|
prob = 0.0
|
|
best = []
|
|
for word in english_words_alpha_set:
|
|
text = ' '.join([before, word, after])
|
|
text_score = model.score(text, bos=False, eos=False)
|
|
if len(best) < 12:
|
|
best.append((word, text_score))
|
|
else:
|
|
worst_score = None
|
|
for score in best:
|
|
if not worst_score:
|
|
worst_score = score
|
|
else:
|
|
if worst_score[1] > score[1]:
|
|
worst_score = score
|
|
if worst_score[1] < text_score:
|
|
best.remove(worst_score)
|
|
best.append((word, text_score))
|
|
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
|
pred_str = ''
|
|
for word, prob in probs:
|
|
pred_str += f'{word}:{prob} '
|
|
pred_str += f':{log10(0.99)}'
|
|
return pred_str
|
|
|
|
def make_prediction(model, path, result_path):
|
|
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
|
with open(result_path, 'w', encoding='utf-8') as file_out:
|
|
for _, row in data.iterrows():
|
|
before, after = word_tokenize(clean(str(row[6]))), word_tokenize(clean(str(row[7])))
|
|
if len(before) < 2 or len(after) < 2:
|
|
pred = PREDICTION
|
|
else:
|
|
pred = predict(model, before[-1], after[0])
|
|
file_out.write(pred + '\n')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
create_train_file()
|
|
train_model()
|
|
model = kenlm.Model('model.arpa')
|
|
make_prediction(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
|
|
make_prediction(model, "test-A/in.tsv.xz", "test-A/out.tsv") |