challenging-america-word-ga.../run.py
Bartosz Karwacki a2064b7ed9 second
2022-04-03 19:30:55 +02:00

106 lines
2.8 KiB
Python

import pandas as pd
import csv
import regex as re
from nltk import bigrams, word_tokenize
from collections import Counter, defaultdict
import string
import unicodedata
data = pd.read_csv(
"train/in.tsv.xz",
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
nrows=250000
)
train_labels = pd.read_csv(
"train/expected.tsv",
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
nrows=250000
)
train_data = data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
model = defaultdict(lambda: defaultdict(lambda: 0))
def clean(text):
text = str(text)
# normalize text
text = (
unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode(
'utf-8', 'ignore'))
# replace html chars with ' '
text = re.sub('<.*?>', ' ', text)
# remove punctuation
text = text.translate(str.maketrans(' ', ' ', string.punctuation))
# only alphabets and numerics
text = re.sub('[^a-zA-Z]', ' ', text)
# replace newline with space
text = re.sub("\n", " ", text)
# lower case
text = text.lower()
# split and join the words
text = ' '.join(text.split())
return text
def train_model(data):
for _, row in data.iterrows():
words = word_tokenize(clean(row["final"]))
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
if w1 and w2:
model[w1][w2] += 1
for w1 in model:
total_count = float(sum(model[w1].values()))
for w2 in model[w1]:
model[w1][w2] /= total_count
def predict(word):
predictions = dict(model[word])
most_common = dict(Counter(predictions).most_common(5))
total_prob = 0.0
str_prediction = ""
for word, prob in most_common.items():
total_prob += prob
str_prediction += f"{word}:{prob} "
if not total_prob:
return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
if 1 - total_prob >= 0.01:
str_prediction += f":{1-total_prob}"
else:
str_prediction += f":0.01"
return str_prediction
def predict_data(read_path, save_path):
data = pd.read_csv(
read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE
)
with open(save_path, "w") as file:
for _, row in data.iterrows():
words = word_tokenize(clean(row[6]))
if len(words) < 3:
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
else:
prediction = predict(words[-1])
file.write(prediction + "\n")
train_model(train_data)
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv")
predict_data("test-A/in.tsv.xz", "test-A/out.tsv")