challenging-america-word-ga.../run2.py
Bartosz Karwacki dc7c0f2010 kenlm
2022-04-25 15:44:44 +02:00

108 lines
3.5 KiB
Python

import pandas as pd
import csv
import regex as re
import kenlm
from english_words import english_words_alpha_set
from nltk import word_tokenize
from math import log10
from pathlib import Path
import os
import numpy as np
KENLM_BUILD_PATH = Path("/home/bartek/Pulpit/challenging-america-word-gap-prediction/kenlm/build")
KENLM_LMPLZ_PATH = KENLM_BUILD_PATH / "bin" / "lmplz"
KENLM_BUILD_BINARY_PATH = KENLM_BUILD_PATH / "bin" / "build_binary"
SUDO_PASSWORD = ""
PREDICTION = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
def clean(text):
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
return re.sub(r"\p{P}", "", text)
def create_train_data():
data = pd.read_csv(
"train/in.tsv.xz",
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
nrows=50000
)
train_labels = pd.read_csv(
"train/expected.tsv",
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
nrows=50000
)
train_data = data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
return train_data[6] + train_data[0] + train_data[7]
def create_train_file(filename="train.txt"):
with open(filename, "w") as f:
for line in create_train_data():
f.write(clean(line) + "\n")
def train_model():
lmplz_command = f"{KENLM_LMPLZ_PATH} -o 4 < train.txt > model.arpa"
build_binary_command = f"{KENLM_BUILD_BINARY_PATH} model.arpa model.binary"
os.system('echo %s|sudo -S %s' % (SUDO_PASSWORD, lmplz_command))
os.system('echo %s|sudo -S %s' % (SUDO_PASSWORD, build_binary_command))
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
def predict(model, before, after):
best_scores = []
for word in english_words_alpha_set:
text = ' '.join([before, word, after])
text_score = model.score(text, bos=False, eos=False)
if len(best_scores) < 12:
best_scores.append((word, text_score))
else:
worst_score = None
for score in best_scores:
if not worst_score:
worst_score = score
else:
if worst_score[1] > score[1]:
worst_score = score
if worst_score[1] < text_score:
best_scores.remove(worst_score)
best_scores.append((word, text_score))
probs = sorted(best_scores, key=lambda tup: tup[1], reverse=True)
pred_str = ''
for word, prob in probs:
pred_str += f'{word}:{prob} '
pred_str += f':{log10(0.99)}'
return pred_str
def make_prediction(model, path, result_path):
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
with open(result_path, 'w', encoding='utf-8') as file_out:
for _, row in data.iterrows():
before, after = word_tokenize(clean(str(row[6]))), word_tokenize(clean(str(row[7])))
if len(before) < 2 or len(after) < 2:
pred = PREDICTION
else:
pred = predict(model, before[-1], after[0])
file_out.write(pred + '\n')
if __name__ == "__main__":
create_train_file()
train_model()
model = kenlm.Model('model.binary')
make_prediction(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
make_prediction(model, "test-A/in.tsv.xz", "test-A/out.tsv")