forked from kubapok/en-ner-conll-2003
149 lines
4.7 KiB
Python
149 lines
4.7 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
import csv
|
|
import torch
|
|
from tqdm import tqdm
|
|
from itertools import islice
|
|
from nltk.tokenize import word_tokenize
|
|
import gensim.downloader as api
|
|
from gensim.models.word2vec import Word2Vec
|
|
|
|
class NERNetwork(torch.nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_classes):
|
|
super(NERNetwork, self).__init__()
|
|
self.l1 = torch.nn.Linear(input_size, hidden_size)
|
|
self.l2 = torch.nn.Linear(hidden_size, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = self.l1(x)
|
|
x = torch.relu(x)
|
|
x = self.l2(x)
|
|
x = torch.log_softmax(x, dim=1)
|
|
return x
|
|
|
|
model = Word2Vec(api.load('text8'))
|
|
word2vec = model.wv
|
|
|
|
WORD_FEATURES_LEN = word2vec.vector_size
|
|
LABEL = {'O': 0, 'LOC': 1, 'MISC': 2, 'ORG': 3,'PER': 4}
|
|
NUM_LABELS = len(LABEL)
|
|
SPECIAL_CHARACTERS = {',', '<', '/', '>', '%', '$', '#', '@', '^', '*', '(', ')', '[', ']', '{', '}', ':'}
|
|
OUT_OF_VOCABULARY = np.ones(WORD_FEATURES_LEN)
|
|
|
|
X_train = []
|
|
y_train = []
|
|
X_dev = []
|
|
X_test = []
|
|
|
|
def get_key_by_value(number):
|
|
return list(LABEL.keys())[list(LABEL.values()).index(number)]
|
|
|
|
def to_vectore(word):
|
|
extra_features = [word[0].isdigit(), len(word) == 1, len(word) < 4, word[0] in SPECIAL_CHARACTERS, word[0].isupper()]
|
|
word = word.lower()
|
|
if word in word2vec:
|
|
vec = word2vec[word]
|
|
else:
|
|
vec = OUT_OF_VOCABULARY
|
|
vec = vec.reshape(-1,1)
|
|
extra_features = np.array(extra_features).reshape(-1, 1)
|
|
return np.concatenate((vec, extra_features), axis=0)
|
|
|
|
def prediction_to_string(prediction):
|
|
prediction_list = prediction.tolist()
|
|
labels = [get_key_by_value(x) for x in prediction_list]
|
|
output = []
|
|
previous_label = None
|
|
for label in labels:
|
|
if label != 'O':
|
|
if previous_label:
|
|
if previous_label == label:
|
|
output.append(f'I-{label}')
|
|
else:
|
|
output.append(f'B-{label}')
|
|
else:
|
|
output.append(f'B-{label}')
|
|
else:
|
|
output.append(label)
|
|
previous_label = label
|
|
return ' '.join(output)
|
|
|
|
train_set = pd.read_table('train/train.tsv.xz', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
|
dev_set = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
|
test_set = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
|
|
|
for index, row in tqdm(train_set.iterrows(), desc="Loading train data", total=train_set.shape[0]):
|
|
labels, words = row[0], row[1]
|
|
words, labels = words.split(), labels.split()
|
|
for word in words:
|
|
X_train.append(to_vectore(word))
|
|
for label in labels:
|
|
if label.startswith('B-'):
|
|
y_train.append(LABEL[label[2:]])
|
|
elif label.startswith('I-'):
|
|
y_train.append(LABEL[label[2:]])
|
|
else:
|
|
y_train.append(0)
|
|
|
|
for index, row in tqdm(dev_set.iterrows(), desc="Loading dev data", total=dev_set.shape[0]):
|
|
words = row[0]
|
|
words = words.split()
|
|
words = [to_vectore(word) for word in words]
|
|
X_dev.append(words)
|
|
|
|
for index, row in tqdm(test_set.iterrows(), desc="Loading test data", total=test_set.shape[0]):
|
|
words = row[0]
|
|
words = words.split()
|
|
words = [to_vectore(word) for word in words]
|
|
X_test.append(words)
|
|
|
|
model = NERNetwork(WORD_FEATURES_LEN + 5, 600, NUM_LABELS)
|
|
|
|
criterion = torch.nn.NLLLoss()
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
|
|
batch_size = 64
|
|
|
|
for epoch in range(5):
|
|
model.train()
|
|
for i in range(0, len(y_train), batch_size):
|
|
X = X_train[i:i+batch_size]
|
|
X = np.array(X).reshape(len(X), WORD_FEATURES_LEN + 5)
|
|
X = torch.tensor(X)
|
|
y = y_train[i:i+batch_size]
|
|
y = np.array(y)
|
|
y = torch.tensor(y)
|
|
|
|
outputs = model(X.float())
|
|
loss = criterion(outputs, y.long())
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
d_pred = []
|
|
t_pred = []
|
|
|
|
model.eval()
|
|
with torch.no_grad():
|
|
for i in range(0, len(X_dev)):
|
|
X = X_dev[i]
|
|
X = np.array(X).reshape(len(X), WORD_FEATURES_LEN + 5)
|
|
X = torch.tensor(X)
|
|
|
|
output = model(X.float())
|
|
prediction = torch.argmax(output, dim=1)
|
|
d_pred.append(prediction_to_string(prediction))
|
|
|
|
for i in range(0, len(X_test)):
|
|
X = X_test[i]
|
|
X = np.array(X).reshape(len(X), WORD_FEATURES_LEN + 5)
|
|
X = torch.tensor(X)
|
|
|
|
output = model(X.float())
|
|
prediction = torch.argmax(output, dim=1)
|
|
t_pred.append(prediction_to_string(prediction))
|
|
|
|
np.asarray(d_pred).tofile('./dev-0/out.tsv', sep='\n', format='%s')
|
|
np.asarray(t_pred).tofile('./test-A/out.tsv', sep='\n', format='%s')
|
|
print('End') |