en-ner-conll-2003/script.py
2021-06-09 00:10:59 +02:00

206 lines
4.7 KiB
Python

import pandas as pd
import numpy as np
import torch
from tqdm import tqdm
import gensim.downloader as api
from gensim.models.word2vec import Word2Vec
# DF
train = pd.read_table(
"train/train.tsv.xz", error_bad_lines=False, header=None, quoting=3
)
testA = pd.read_table("test-A/in.tsv", error_bad_lines=False, header=None, quoting=3)
dev0 = pd.read_table("dev-0/in.tsv", error_bad_lines=False, header=None, quoting=3)
# VARS
w2v = Word2Vec(api.load("text8"))
X_train, X_test, X_dev, y_train, dev_predictions, test_predictions = (
[],
[],
[],
[],
[],
[],
)
## CONST
LABELS = {
"O": 0,
"B-ORG": 1,
"B-MISC": 2,
"B-PER": 3,
"I-PER": 4,
"I-MISC": 5,
"B-LOC": 6,
"I-ORG": 7,
"I-LOC": 8,
}
SPECIAL_CHARACTERS = (
",",
"<",
"/",
">",
"%",
"$",
"#",
"@",
"^",
"*",
"(",
")",
"[",
"]",
"{",
"}",
":",
)
ONES = np.ones(w2v.vector_size)
# FUNCTIONS
def get_key_by_value(value):
for key, dict_value in LABELS.items():
if dict_value == value:
return key
return 0
def to_vector(word):
features_array = np.array(
[
any(c for c in word if c in SPECIAL_CHARACTERS),
word.isalpha(),
word[0].isupper(),
len(word) == 1,
len(word) == 2,
],
).reshape(-1, 1)
word = word.lower()
vec = w2v.wv[word] if word in w2v.wv else ONES
vec = vec.reshape(-1, 1)
return np.concatenate((vec, features_array))
def stringify_prediction(prediction):
labels = [get_key_by_value(value) for value in prediction.tolist()]
output = []
previous_label = None
for label in labels:
if label != "O":
if previous_label:
if previous_label == label:
output.append(f"I-{label[2:]}")
else:
output.append(f"B-{label[2:]}")
else:
output.append(f"B-{label[2:]}")
else:
output.append(label)
previous_label = label
return " ".join(output)
# MODEL
class NERModel(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NERModel, self).__init__()
self.l1 = torch.nn.Linear(input_size, hidden_size)
self.l2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.l1(x)
x = torch.relu(x)
x = self.l2(x)
x = torch.log_softmax(x, dim=1)
return x
model = NERModel(105, 600, len(LABELS))
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters())
batch_size = 64
# READ DATA
for index, row in tqdm(
train.iterrows(), desc="Loading train data", total=train.shape[0]
):
labels, words = row[0], row[1]
words, labels = words.split(), labels.split()
for word in words:
X_train.append(to_vector(word))
for label in labels:
if label.startswith("B-") or label.startswith("I-"):
y_train.append(LABELS[label])
else:
y_train.append(0)
for index, row in tqdm(dev0.iterrows(), desc="Loading dev data", total=dev0.shape[0]):
words = row[0]
words = words.split()
words = [to_vector(word) for word in words]
X_dev.append(words)
for index, row in tqdm(
testA.iterrows(), desc="Loading test data", total=testA.shape[0]
):
words = row[0]
words = words.split()
words = [to_vector(word) for word in words]
X_test.append(words)
print("TRAINING")
# TRAINING
for epoch in range(100):
model.train()
for i in range(0, len(y_train), batch_size):
X = X_train[i : i + batch_size]
X = np.array(X).reshape(len(X), 105)
X = torch.tensor(X)
y = y_train[i : i + batch_size]
y = np.array(y)
y = torch.tensor(y)
outputs = model(X.float())
loss = criterion(outputs, y.long())
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
for i in range(0, len(X_dev)):
X = X_dev[i]
X = np.array(X).reshape(len(X), 105)
X = torch.tensor(X)
output = model(X.float())
prediction = torch.argmax(output, dim=1)
dev_predictions.append(stringify_prediction(prediction))
for i in range(0, len(X_test)):
X = X_test[i]
X = np.array(X).reshape(len(X), 105)
X = torch.tensor(X)
output = model(X.float())
prediction = torch.argmax(output, dim=1)
test_predictions.append(stringify_prediction(prediction))
dev_predictions = np.asarray(dev_predictions)
test_predictions = np.asarray(test_predictions)
dev_predictions.tofile("dev-0/out.tsv", sep="\n", format="%s")
test_predictions.tofile("test-A/out.tsv", sep="\n", format="%s")