challenging-america-word-ga.../run.ipynb

232 lines
6.2 KiB
Plaintext
Raw Permalink Normal View History

2022-03-31 21:07:24 +02:00
{
"cells": [
{
"cell_type": "markdown",
"id": "2a4fb731",
"metadata": {},
"source": [
"MODEL TRIGRAMOWY - uwzględniamy dwa poprzednie słowa"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c16d72a6",
"metadata": {},
"outputs": [],
"source": [
"import lzma\n",
"import csv\n",
"import re\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a1ff03c8",
"metadata": {},
"outputs": [],
"source": [
"def read_data(folder_name, test_data=False):\n",
" \n",
" all_data = lzma.open(f'{folder_name}/in.tsv.xz').read().decode('UTF-8').split('\\n')\n",
" data = [line.split('\\t') for line in all_data][:-1]\n",
" data = [[i[6].replace('\\\\n', ' '), i[7].replace('\\\\n', ' ')] for i in data]\n",
" \n",
" if not test_data:\n",
" words = []\n",
" with open(f'{folder_name}/expected.tsv') as file:\n",
" tsv_file = csv.reader(file, delimiter=\"\\t\")\n",
" for line in tsv_file:\n",
" words.append(line[0])\n",
" \n",
" return data, words\n",
" \n",
" return data\n",
"\n",
"train_data, train_words = read_data('train')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a4a73c19",
"metadata": {},
"outputs": [],
"source": [
"def print_example(data, words, idx):\n",
" print(f'{data[idx][0]} _____{words[idx].upper()}_____ {data[idx][1]}')\n",
" \n",
"# print_example(train_data, train_words, 13)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ce522af5",
"metadata": {},
"outputs": [],
"source": [
"def generate_N_grams(text, ngram=1, no_punctuation=True):\n",
" text = re.sub(r'[\\-] ', '', text).lower()\n",
" if no_punctuation:\n",
2022-04-01 15:41:25 +02:00
" text = re.sub(r'[^\\w\\s]', ' ', text)\n",
2022-03-31 21:07:24 +02:00
" words=[word for word in text.split()]\n",
" temp=zip(*[words[i:] for i in range(0,ngram)])\n",
" ans=[' '.join(ngram) for ngram in temp]\n",
" return ans\n",
"\n",
"N_grams = []\n",
"for i in range(len(train_data[:5000])):\n",
" N_grams += generate_N_grams(f'{train_data[i][0]} {train_words[i]} {train_data[i][1]}', 2)\n",
" N_grams += generate_N_grams(f'{train_data[i][0]} {train_words[i]} {train_data[i][1]}', 3)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "317ade72",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def check_prob(N_grams):\n",
" count = {}\n",
" for i in N_grams:\n",
" i = i.rsplit(maxsplit=1)\n",
" if i[0] in count:\n",
" if i[1] in count[i[0]]:\n",
" count[i[0]][i[1]] += 1\n",
" else:\n",
" count[i[0]][i[1]] = 1\n",
" else:\n",
" count[i[0]] = {i[1]: 1}\n",
" \n",
" for word in count:\n",
" s = sum(count[word].values())\n",
" for i in count[word]:\n",
" count[word][i] = count[word][i] / s\n",
" \n",
" return count\n",
"\n",
"probs = check_prob(N_grams)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3a7ec4ec",
"metadata": {},
"outputs": [],
"source": [
"dev_data, dev_words = read_data('dev-0')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "86aeda02",
"metadata": {},
"outputs": [],
"source": [
"def find_word(word_1, word_2):\n",
" tmp_probs = {}\n",
" if word_1 in probs:\n",
" if word_2 in probs:\n",
" for i in probs[word_1]:\n",
" if i in probs[word_2]:\n",
" tmp_probs[i] = probs[word_1][i] * probs[word_2][i]\n",
" if tmp_probs[i] == 1:\n",
" tmp_probs[i] = 0.1\n",
" else:\n",
2022-04-01 15:41:25 +02:00
" tmp_probs[i] = probs[word_1][i] / 5\n",
2022-03-31 21:07:24 +02:00
" else:\n",
" tmp_probs = probs[word_1]\n",
" else:\n",
" tmp_probs = {}\n",
" \n",
" sorted_list = sorted(tmp_probs.items(), key=lambda x: x[1], reverse=True)[:1]\n",
" tmm = ' '.join([i[0] + ':' + str(i[1]) for i in sorted_list])\n",
" s = 1 - sum(n for _, n in sorted_list)\n",
" if s == 0:\n",
" s = 0.01\n",
" tmm += ' :' + str(s)\n",
" if tmp_probs == {}:\n",
" return ':1'\n",
" return tmm"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3b713dc3",
"metadata": {},
"outputs": [],
"source": [
"def find_words(data):\n",
" found_words = []\n",
" for i in data:\n",
" t = i[0]\n",
" t = re.sub(r'[\\-] ', '', t).lower()\n",
" if True:\n",
2022-04-01 15:41:25 +02:00
" t = re.sub(r'[^\\w\\s]', ' ', t)\n",
2022-03-31 21:07:24 +02:00
" words=[word for word in t.split()]\n",
" found_words.append(find_word(words[-1], ' '.join(words[-2:])))\n",
" return found_words\n",
"\n",
"dev_found_words = find_words(dev_data)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "17be7468",
"metadata": {},
"outputs": [],
"source": [
"def save_data(folder, words):\n",
" f = open(f'{folder}/out.tsv', 'w')\n",
" f.write('\\n'.join(words) + '\\n')\n",
" f.close()\n",
" \n",
"save_data('dev-0', dev_found_words)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b2e52242",
"metadata": {},
"outputs": [],
"source": [
"test_data = read_data('test-A', True)\n",
"test_found_words = find_words(test_data)\n",
"save_data('test-A', test_found_words)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}