131 lines
3.4 KiB
Python
131 lines
3.4 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# MODEL TRIGRAMOWY - uwzględniamy dwa poprzednie słowa
|
|
|
|
|
|
import lzma
|
|
import csv
|
|
import re
|
|
import math
|
|
|
|
|
|
def read_data(folder_name, test_data=False):
|
|
|
|
all_data = lzma.open(f'{folder_name}/in.tsv.xz').read().decode('UTF-8').split('\n')
|
|
data = [line.split('\t') for line in all_data][:-1]
|
|
data = [[i[6].replace('\\n', ' '), i[7].replace('\\n', ' ')] for i in data]
|
|
|
|
if not test_data:
|
|
words = []
|
|
with open(f'{folder_name}/expected.tsv') as file:
|
|
tsv_file = csv.reader(file, delimiter="\t")
|
|
for line in tsv_file:
|
|
words.append(line[0])
|
|
|
|
return data, words
|
|
|
|
return data
|
|
|
|
train_data, train_words = read_data('train')
|
|
|
|
|
|
def print_example(data, words, idx):
|
|
print(f'{data[idx][0]} _____{words[idx].upper()}_____ {data[idx][1]}')
|
|
|
|
# print_example(train_data, train_words, 13)
|
|
|
|
|
|
def generate_N_grams(text, ngram=1, no_punctuation=True):
|
|
text = re.sub(r'[\-] ', '', text).lower()
|
|
if no_punctuation:
|
|
text = re.sub(r'[^\w\s]', ' ', text)
|
|
words=[word for word in text.split()]
|
|
temp=zip(*[words[i:] for i in range(0,ngram)])
|
|
ans=[' '.join(ngram) for ngram in temp]
|
|
return ans
|
|
|
|
N_grams = []
|
|
for i in range(len(train_data[:5000])):
|
|
N_grams += generate_N_grams(f'{train_data[i][0]} {train_words[i]} {train_data[i][1]}', 2)
|
|
N_grams += generate_N_grams(f'{train_data[i][0]} {train_words[i]} {train_data[i][1]}', 3)
|
|
|
|
|
|
def check_prob(N_grams):
|
|
count = {}
|
|
for i in N_grams:
|
|
i = i.rsplit(maxsplit=1)
|
|
if i[0] in count:
|
|
if i[1] in count[i[0]]:
|
|
count[i[0]][i[1]] += 1
|
|
else:
|
|
count[i[0]][i[1]] = 1
|
|
else:
|
|
count[i[0]] = {i[1]: 1}
|
|
|
|
for word in count:
|
|
s = sum(count[word].values())
|
|
for i in count[word]:
|
|
count[word][i] = count[word][i] / s
|
|
|
|
return count
|
|
|
|
probs = check_prob(N_grams)
|
|
|
|
|
|
dev_data, dev_words = read_data('dev-0')
|
|
|
|
|
|
def find_word(word_1, word_2):
|
|
tmp_probs = {}
|
|
if word_1 in probs:
|
|
if word_2 in probs:
|
|
for i in probs[word_1]:
|
|
if i in probs[word_2]:
|
|
tmp_probs[i] = probs[word_1][i] * probs[word_2][i]
|
|
if tmp_probs[i] == 1:
|
|
tmp_probs[i] = 0.1
|
|
else:
|
|
tmp_probs[i] = probs[word_1][i] / 5
|
|
else:
|
|
tmp_probs = probs[word_1]
|
|
else:
|
|
tmp_probs = {}
|
|
|
|
sorted_list = sorted(tmp_probs.items(), key=lambda x: x[1], reverse=True)[:1]
|
|
tmm = ' '.join([i[0] + ':' + str(i[1]) for i in sorted_list])
|
|
s = 1 - sum(n for _, n in sorted_list)
|
|
if s == 0:
|
|
s = 0.01
|
|
tmm += ' :' + str(s)
|
|
if tmp_probs == {}:
|
|
return ':1'
|
|
return tmm
|
|
|
|
|
|
def find_words(data):
|
|
found_words = []
|
|
for i in data:
|
|
t = i[0]
|
|
t = re.sub(r'[\-] ', '', t).lower()
|
|
if True:
|
|
t = re.sub(r'[^\w\s]', ' ', t)
|
|
words=[word for word in t.split()]
|
|
found_words.append(find_word(words[-1], ' '.join(words[-2:])))
|
|
return found_words
|
|
|
|
dev_found_words = find_words(dev_data)
|
|
|
|
|
|
def save_data(folder, words):
|
|
f = open(f'{folder}/out.tsv', 'w')
|
|
f.write('\n'.join(words) + '\n')
|
|
f.close()
|
|
|
|
save_data('dev-0', dev_found_words)
|
|
|
|
|
|
test_data = read_data('test-A', True)
|
|
test_found_words = find_words(test_data)
|
|
save_data('test-A', test_found_words)
|