en-ner-conll-2003/rnn_fras.py

341 lines
7.4 KiB
Python
Raw Permalink Normal View History

2021-06-22 20:21:17 +02:00
#!/usr/bin/env python
# coding: utf-8
# ## Zadanie domowe
#
#
# - sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003
# - stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).
# - model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
# - wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65
# - proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo
# termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów
#
# In[2]:
import numpy as np
import torch
from torchtext.vocab import Vocab
from collections import Counter
from tqdm.notebook import tqdm
import lzma
import itertools
from torchcrf import CRF
# In[3]:
def read_data(filename):
all_data = lzma.open(filename).read().decode('UTF-8').split('\n')
return [line.split('\t') for line in all_data][:-1]
# In[4]:
def data_process(dt):
return [torch.tensor([vocab['<bos>']] + [vocab[token] for token in document] + [vocab['<eos>']], dtype = torch.long) for document in dt]
# In[5]:
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
# In[6]:
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
# In[7]:
train_data = read_data('train/train.tsv.xz')
tokens, ner_tags = [], []
for i in train_data:
ner_tags.append(i[0].split())
tokens.append(i[1].split())
# In[8]:
vocab = build_vocab(tokens)
# In[9]:
train_tokens_ids = data_process(tokens)
# In[10]:
ner_tags_set = list(set(itertools.chain(*ner_tags)))
ner_tags_set.sort()
print(ner_tags_set)
train_labels = labels_process([[ner_tags_set.index(token) for token in doc] for doc in ner_tags])
# In[11]:
num_tags = max([max(x) for x in train_labels]) + 1
# In[12]:
class GRU(torch.nn.Module):
def __init__(self):
super(GRU, self).__init__()
self.emb = torch.nn.Embedding(len(vocab.itos),100)
self.dropout = torch.nn.Dropout(0.2)
self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)
self.fc1 = torch.nn.Linear(2* 256 , 9)
def forward(self, x):
emb = torch.relu(self.emb(x))
emb = self.dropout(emb)
gru_output, h_n = self.rec(emb)
out_weights = self.fc1(gru_output)
return out_weights
# In[13]:
def get_scores(y_true, y_pred):
acc_score = 0
tp = 0
fp = 0
selected_items = 0
relevant_items = 0
for p,t in zip(y_pred, y_true):
if p == t:
acc_score +=1
if p > 0 and p == t:
tp +=1
if p > 0:
selected_items += 1
if t > 0 :
relevant_items +=1
if selected_items == 0:
precision = 1.0
else:
precision = tp / selected_items
if relevant_items == 0:
recall = 1.0
else:
recall = tp / relevant_items
if precision + recall == 0.0 :
f1 = 0.0
else:
f1 = 2* precision * recall / (precision + recall)
return precision, recall, f1
# In[14]:
def eval_model(dataset_tokens, dataset_labels, model):
Y_true = []
Y_pred = []
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i].unsqueeze(1)
tags = list(dataset_labels[i].numpy())
emissions = gru(batch_tokens).squeeze(0)
Y_pred += crf.decode(emissions)[0]
Y_true += tags
return get_scores(Y_true, Y_pred)
# In[15]:
gru = GRU()
crf = CRF(num_tags)
# In[16]:
params = list(gru.parameters()) + list(crf.parameters())
optimizer = torch.optim.Adam(params)
# In[17]:
NUM_EPOCHS = 20
# In[18]:
criterion = torch.nn.CrossEntropyLoss()
# In[19]:
for i in range(NUM_EPOCHS):
gru.train()
crf.train()
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i].unsqueeze(1)
tags = train_labels[i].unsqueeze(1)
emissions = gru(batch_tokens).squeeze(0)
optimizer.zero_grad()
loss = -crf(emissions,tags.squeeze(0))
loss.backward()
optimizer.step()
gru.eval()
crf.eval()
print(eval_model(train_tokens_ids, train_labels, gru))
# ## dev-0 i test-A
# In[20]:
def predict_labels(dataset_tokens, dataset_labels, model):
print(len(dataset_tokens[0]), len(dataset_labels[0]))
Y_true = []
Y_pred = []
result = []
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i].unsqueeze(1)
tags = list(dataset_labels[i].numpy())
emissions = gru(batch_tokens).squeeze(0)
tmp = crf.decode(emissions)[0]
Y_pred += tmp
result += [tmp]
Y_true += tags
print(get_scores(Y_true, Y_pred))
return result
# In[21]:
with open('dev-0/in.tsv', "r", encoding="utf-8") as f:
dev_0_data = [line.rstrip() for line in f]
dev_0_data = [i.split() for i in dev_0_data]
dev_0_tokens_ids = data_process(dev_0_data)
# In[22]:
with open('dev-0/expected.tsv', "r", encoding="utf-8") as f:
dev_0_labels = [line.rstrip() for line in f]
dev_0_labels = [i.split() for i in dev_0_labels]
dev_0_labels = labels_process([[ner_tags_set.index(token) for token in doc] for doc in dev_0_labels])
# In[23]:
tmp = predict_labels(dev_0_tokens_ids, dev_0_labels, gru)
# In[24]:
r = [[ner_tags_set[i] for i in tmp2] for tmp2 in tmp]
r = [i[1:-1] for i in r]
# In[25]:
for doc in r:
if doc[0] != 'O':
doc[0] = 'B' + doc[0][1:]
for i in range(len(doc))[:-1]:
if doc[i] == 'O':
if doc[i + 1] != 'O':
doc[i + 1] = 'B' + doc[i + 1][1:]
elif doc[i + 1] != 'O':
if doc[i][1:] == doc[i + 1][1:]:
doc[i + 1] = 'I' + doc[i + 1][1:]
else:
doc[i + 1] = 'B' + doc[i + 1][1:]
# In[26]:
f = open("dev-0/out.tsv", "a")
for i in r:
f.write(' '.join(i) + '\n')
f.close()
# In[27]:
def predict(path, model):
with open(path + '/in.tsv', "r", encoding="utf-8") as f:
data = [line.rstrip() for line in f]
data = [i.split() for i in data]
tokens_ids = data_process(data)
Y_true = []
Y_pred = []
result = []
for i in tqdm(range(len(tokens_ids))):
batch_tokens = tokens_ids[i].unsqueeze(1)
emissions = gru(batch_tokens).squeeze(0)
tmp = crf.decode(emissions)[0]
Y_pred += tmp
result += [tmp]
r = [[ner_tags_set[i] for i in tmp] for tmp in result]
r = [i[1:-1] for i in r]
for doc in r:
if doc[0] != 'O':
doc[0] = 'B' + doc[0][1:]
for i in range(len(doc))[:-1]:
if doc[i] == 'O':
if doc[i + 1] != 'O':
doc[i + 1] = 'B' + doc[i + 1][1:]
elif doc[i + 1] != 'O':
if doc[i][1:] == doc[i + 1][1:]:
doc[i + 1] = 'I' + doc[i + 1][1:]
else:
doc[i + 1] = 'B' + doc[i + 1][1:]
f = open(path + "/out.tsv", "a")
for i in r:
f.write(' '.join(i) + '\n')
f.close()
return result
result = predict('dev-0', gru)
result = predict('test-A', gru)