forked from kubapok/retroc2
add script
This commit is contained in:
parent
56217b104a
commit
ad632af707
1467
retroc2.ipynb
Normal file
1467
retroc2.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
194
retroc2.py
Normal file
194
retroc2.py
Normal file
@ -0,0 +1,194 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf-8
|
||||||
|
|
||||||
|
# # retroc2
|
||||||
|
|
||||||
|
# In[1]:
|
||||||
|
|
||||||
|
|
||||||
|
import lzma
|
||||||
|
import csv
|
||||||
|
from stop_words import get_stop_words
|
||||||
|
import gensim
|
||||||
|
import itertools
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
|
||||||
|
|
||||||
|
# In[38]:
|
||||||
|
|
||||||
|
|
||||||
|
def read_data(filename):
|
||||||
|
all_data = lzma.open(filename).read().decode('UTF-8').split('\n')
|
||||||
|
return [line.split('\t') for line in all_data][:-1]
|
||||||
|
|
||||||
|
train_data = read_data('train/train.tsv.xz')[::500]
|
||||||
|
|
||||||
|
|
||||||
|
# In[39]:
|
||||||
|
|
||||||
|
|
||||||
|
train_data[0]
|
||||||
|
|
||||||
|
|
||||||
|
# In[40]:
|
||||||
|
|
||||||
|
|
||||||
|
stop_words = get_stop_words('pl') + ['a', 'u', 'i', 'z', 'w', 'o']
|
||||||
|
print(stop_words)
|
||||||
|
|
||||||
|
|
||||||
|
# In[41]:
|
||||||
|
|
||||||
|
|
||||||
|
train_data_tokenized = [list(set(gensim.utils.tokenize(x[4], lowercase = True))) for x in train_data]
|
||||||
|
|
||||||
|
|
||||||
|
# In[42]:
|
||||||
|
|
||||||
|
|
||||||
|
train_data_tokenized[0]
|
||||||
|
|
||||||
|
|
||||||
|
# In[43]:
|
||||||
|
|
||||||
|
|
||||||
|
train_data_stemmatized = [list(set([w[:6] for w in set(i) - set(stop_words)])) for i in train_data_tokenized]
|
||||||
|
train_data_stemmatized[0]
|
||||||
|
|
||||||
|
|
||||||
|
# In[44]:
|
||||||
|
|
||||||
|
|
||||||
|
vectorizer = TfidfVectorizer()
|
||||||
|
vectors = vectorizer.fit_transform([' '.join(i) for i in train_data_stemmatized])
|
||||||
|
|
||||||
|
|
||||||
|
# In[45]:
|
||||||
|
|
||||||
|
|
||||||
|
feature_names = vectorizer.get_feature_names()
|
||||||
|
dense = vectors.todense()
|
||||||
|
denselist = dense.tolist()
|
||||||
|
df = pd.DataFrame(denselist, columns=feature_names)
|
||||||
|
|
||||||
|
|
||||||
|
# In[46]:
|
||||||
|
|
||||||
|
|
||||||
|
len(train_data)
|
||||||
|
|
||||||
|
|
||||||
|
# In[47]:
|
||||||
|
|
||||||
|
|
||||||
|
df[:10]
|
||||||
|
|
||||||
|
|
||||||
|
# In[48]:
|
||||||
|
|
||||||
|
|
||||||
|
vectorizer.transform(['__ ma kota']).toarray()[0]
|
||||||
|
|
||||||
|
|
||||||
|
# In[49]:
|
||||||
|
|
||||||
|
|
||||||
|
train_Y = [(float(x[0]) + float(x[1])) / 2 for x in train_data]
|
||||||
|
|
||||||
|
|
||||||
|
# In[50]:
|
||||||
|
|
||||||
|
|
||||||
|
model = LinearRegression() # definicja modelu
|
||||||
|
model.fit(df, train_Y) # dopasowanie modelu
|
||||||
|
|
||||||
|
|
||||||
|
# In[51]:
|
||||||
|
|
||||||
|
|
||||||
|
model.predict(df[:10])
|
||||||
|
|
||||||
|
|
||||||
|
# In[52]:
|
||||||
|
|
||||||
|
|
||||||
|
with open('dev-0/in.tsv', "r", encoding="utf-8") as f:
|
||||||
|
dev_0_data = [line.rstrip() for line in f]
|
||||||
|
|
||||||
|
dev_0_data_tokenized = [list(set(gensim.utils.tokenize(x, lowercase = True))) for x in dev_0_data]
|
||||||
|
dev_0_data_stemmatized = [list(set([w[:6] for w in set(i) - set(stop_words)])) for i in dev_0_data_tokenized]
|
||||||
|
dev_0_data = [' '.join(i) for i in dev_0_data_stemmatized]
|
||||||
|
|
||||||
|
|
||||||
|
# In[53]:
|
||||||
|
|
||||||
|
|
||||||
|
y_predicted = model.predict(vectorizer.transform(dev_0_data).toarray())
|
||||||
|
|
||||||
|
|
||||||
|
# In[54]:
|
||||||
|
|
||||||
|
|
||||||
|
y_predicted[:10]
|
||||||
|
|
||||||
|
|
||||||
|
# In[66]:
|
||||||
|
|
||||||
|
|
||||||
|
f = open("dev-0/out.tsv", "a")
|
||||||
|
for i in y_predicted:
|
||||||
|
f.write(str(round(i, 11)) + '\n')
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
|
||||||
|
# In[56]:
|
||||||
|
|
||||||
|
|
||||||
|
with open('dev-0/expected.tsv', "r", encoding="utf-8") as f:
|
||||||
|
e = [line.rstrip() for line in f]
|
||||||
|
|
||||||
|
|
||||||
|
# In[57]:
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
t = []
|
||||||
|
for i in range(len(y_predicted)):
|
||||||
|
tmp = (float(y_predicted[i]) - float(e[i])) ** 2
|
||||||
|
t.append(tmp)
|
||||||
|
print(math.sqrt(sum(t)/len(y_predicted)))
|
||||||
|
|
||||||
|
|
||||||
|
# In[65]:
|
||||||
|
|
||||||
|
|
||||||
|
with open('test-A/in.tsv', "r", encoding="utf-8") as f:
|
||||||
|
test_A_data = [line.rstrip() for line in f]
|
||||||
|
|
||||||
|
test_A_data_tokenized = [list(set(gensim.utils.tokenize(x, lowercase = True))) for x in test_A_data]
|
||||||
|
test_A_data_stemmatized = [list(set([w[:6] for w in set(i) - set(stop_words)])) for i in test_A_data_tokenized]
|
||||||
|
test_A_data = [' '.join(i) for i in test_A_data_stemmatized]
|
||||||
|
|
||||||
|
|
||||||
|
# In[61]:
|
||||||
|
|
||||||
|
|
||||||
|
y_test_predicted = model.predict(vectorizer.transform(test_A_data).toarray())
|
||||||
|
|
||||||
|
|
||||||
|
# In[62]:
|
||||||
|
|
||||||
|
|
||||||
|
y_test_predicted[:10]
|
||||||
|
|
||||||
|
|
||||||
|
# In[67]:
|
||||||
|
|
||||||
|
|
||||||
|
f = open("test-A/out.tsv", "a")
|
||||||
|
for i in y_test_predicted:
|
||||||
|
f.write(str(round(i, 11)) + '\n')
|
||||||
|
f.close()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user