add script

This commit is contained in:
Zosia 2021-05-18 22:41:52 +02:00
parent 56217b104a
commit ad632af707
2 changed files with 1661 additions and 0 deletions

1467
retroc2.ipynb Normal file

File diff suppressed because it is too large Load Diff

194
retroc2.py Normal file
View File

@ -0,0 +1,194 @@
#!/usr/bin/env python
# coding: utf-8
# # retroc2
# In[1]:
import lzma
import csv
from stop_words import get_stop_words
import gensim
import itertools
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
from sklearn.linear_model import LinearRegression
# In[38]:
def read_data(filename):
all_data = lzma.open(filename).read().decode('UTF-8').split('\n')
return [line.split('\t') for line in all_data][:-1]
train_data = read_data('train/train.tsv.xz')[::500]
# In[39]:
train_data[0]
# In[40]:
stop_words = get_stop_words('pl') + ['a', 'u', 'i', 'z', 'w', 'o']
print(stop_words)
# In[41]:
train_data_tokenized = [list(set(gensim.utils.tokenize(x[4], lowercase = True))) for x in train_data]
# In[42]:
train_data_tokenized[0]
# In[43]:
train_data_stemmatized = [list(set([w[:6] for w in set(i) - set(stop_words)])) for i in train_data_tokenized]
train_data_stemmatized[0]
# In[44]:
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform([' '.join(i) for i in train_data_stemmatized])
# In[45]:
feature_names = vectorizer.get_feature_names()
dense = vectors.todense()
denselist = dense.tolist()
df = pd.DataFrame(denselist, columns=feature_names)
# In[46]:
len(train_data)
# In[47]:
df[:10]
# In[48]:
vectorizer.transform(['__ ma kota']).toarray()[0]
# In[49]:
train_Y = [(float(x[0]) + float(x[1])) / 2 for x in train_data]
# In[50]:
model = LinearRegression() # definicja modelu
model.fit(df, train_Y) # dopasowanie modelu
# In[51]:
model.predict(df[:10])
# In[52]:
with open('dev-0/in.tsv', "r", encoding="utf-8") as f:
dev_0_data = [line.rstrip() for line in f]
dev_0_data_tokenized = [list(set(gensim.utils.tokenize(x, lowercase = True))) for x in dev_0_data]
dev_0_data_stemmatized = [list(set([w[:6] for w in set(i) - set(stop_words)])) for i in dev_0_data_tokenized]
dev_0_data = [' '.join(i) for i in dev_0_data_stemmatized]
# In[53]:
y_predicted = model.predict(vectorizer.transform(dev_0_data).toarray())
# In[54]:
y_predicted[:10]
# In[66]:
f = open("dev-0/out.tsv", "a")
for i in y_predicted:
f.write(str(round(i, 11)) + '\n')
f.close()
# In[56]:
with open('dev-0/expected.tsv', "r", encoding="utf-8") as f:
e = [line.rstrip() for line in f]
# In[57]:
import math
t = []
for i in range(len(y_predicted)):
tmp = (float(y_predicted[i]) - float(e[i])) ** 2
t.append(tmp)
print(math.sqrt(sum(t)/len(y_predicted)))
# In[65]:
with open('test-A/in.tsv', "r", encoding="utf-8") as f:
test_A_data = [line.rstrip() for line in f]
test_A_data_tokenized = [list(set(gensim.utils.tokenize(x, lowercase = True))) for x in test_A_data]
test_A_data_stemmatized = [list(set([w[:6] for w in set(i) - set(stop_words)])) for i in test_A_data_tokenized]
test_A_data = [' '.join(i) for i in test_A_data_stemmatized]
# In[61]:
y_test_predicted = model.predict(vectorizer.transform(test_A_data).toarray())
# In[62]:
y_test_predicted[:10]
# In[67]:
f = open("test-A/out.tsv", "a")
for i in y_test_predicted:
f.write(str(round(i, 11)) + '\n')
f.close()