Zad 10. DVC
This commit is contained in:
parent
002b3b8d6d
commit
3db952a567
2
.gitignore
vendored
2
.gitignore
vendored
@ -1 +1,3 @@
|
|||||||
/Steel_industry_data.csv
|
/Steel_industry_data.csv
|
||||||
|
/steel_industry_data_train.csv
|
||||||
|
/steel_industry_data_test.csv
|
||||||
|
41
evaluate.py
Normal file
41
evaluate.py
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn import metrics
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import tensorflow as tf
|
||||||
|
import math
|
||||||
|
|
||||||
|
from tensorflow import keras
|
||||||
|
from process_dataset import process_data_and_get_x_y
|
||||||
|
|
||||||
|
|
||||||
|
def show_result(x, y):
|
||||||
|
plt.title('Usage kWh Model', fontsize=15, color='g', pad=12)
|
||||||
|
plt.plot(x, y, 'o', color='r')
|
||||||
|
|
||||||
|
m, b = np.polyfit(x, y, 1)
|
||||||
|
plt.plot(x, m * x + b, color='darkblue')
|
||||||
|
plt.xlabel('Actual')
|
||||||
|
plt.ylabel('Predicted')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
model = keras.models.load_model('steel_industry_model')
|
||||||
|
|
||||||
|
energy_data_test = pd.read_csv('Steel_industry_data_test.csv')
|
||||||
|
energy_data_test, x_test, y_test = process_data_and_get_x_y(energy_data_test)
|
||||||
|
|
||||||
|
y_predicted = model.predict(x_test)
|
||||||
|
test_results = {}
|
||||||
|
test_results['usage_model'] = model.evaluate(
|
||||||
|
x_test,
|
||||||
|
y_test, verbose=0)
|
||||||
|
|
||||||
|
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
|
||||||
|
print('Mean Squared Error : ', metrics.mean_squared_error(y_test, y_predicted))
|
||||||
|
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
|
||||||
|
|
||||||
|
print(test_results['usage_model'])
|
||||||
|
|
||||||
|
show_result(y_test, y_predicted)
|
@ -34,28 +34,14 @@ def plot_loss(history):
|
|||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def show_result(x, y):
|
|
||||||
plt.title('One variable Model', fontsize=15, color='g', pad=12)
|
|
||||||
plt.plot(x, y, 'o', color='r')
|
|
||||||
|
|
||||||
m, b = np.polyfit(x, y, 1)
|
|
||||||
plt.plot(x, m * x + b, color='darkblue')
|
|
||||||
plt.xlabel('Actual')
|
|
||||||
plt.ylabel('Predicted')
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
energy_data_train = pd.read_csv('Steel_industry_data_train.csv')
|
energy_data_train = pd.read_csv('Steel_industry_data_train.csv')
|
||||||
energy_data_test = pd.read_csv('Steel_industry_data_test.csv')
|
|
||||||
|
|
||||||
energy_data_test, x_test, y_test = process_data_and_get_x_y(energy_data_test)
|
|
||||||
energy_data_train, x_train, y_train = process_data_and_get_x_y(energy_data_train)
|
energy_data_train, x_train, y_train = process_data_and_get_x_y(energy_data_train)
|
||||||
|
|
||||||
#x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2, random_state=1)
|
#x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2, random_state=1)
|
||||||
# x_test, x_dev, y_test, y_dev = train_test_split(x_test, y_test, test_size=0.5, random_state=1)
|
# x_test, x_dev, y_test, y_dev = train_test_split(x_test, y_test, test_size=0.5, random_state=1)
|
||||||
|
|
||||||
# stats
|
# stats
|
||||||
print(energy_data_test.describe(include='all'))
|
|
||||||
print(x_train.describe(include='all'))
|
print(x_train.describe(include='all'))
|
||||||
#print(np.array(x_train).reshape(-1, 1))
|
#print(np.array(x_train).reshape(-1, 1))
|
||||||
|
|
||||||
@ -66,10 +52,6 @@ print(normalizer.mean.numpy())
|
|||||||
# powinno być niezmienione
|
# powinno być niezmienione
|
||||||
print(np.array(x_train[:1]))
|
print(np.array(x_train[:1]))
|
||||||
|
|
||||||
#usage = np.array(x_train)
|
|
||||||
#usage_normalizer = keras.layers.Normalization(input_shape=[14, ], axis=1)
|
|
||||||
#usage_normalizer.adapt(usage)
|
|
||||||
|
|
||||||
usage_model = tf.keras.Sequential([
|
usage_model = tf.keras.Sequential([
|
||||||
normalizer,
|
normalizer,
|
||||||
keras.layers.Dense(units=10, activation='relu'),
|
keras.layers.Dense(units=10, activation='relu'),
|
||||||
@ -97,30 +79,4 @@ print(hist.tail())
|
|||||||
|
|
||||||
plot_loss(history)
|
plot_loss(history)
|
||||||
|
|
||||||
y_predicted = usage_model.predict(x_test)
|
usage_model.save('steel_industry_model')
|
||||||
test_results = {}
|
|
||||||
test_results['usage_model'] = usage_model.evaluate(
|
|
||||||
x_test,
|
|
||||||
y_test, verbose=0)
|
|
||||||
|
|
||||||
print('Mean Absolute Error : ', metrics.mean_absolute_error(y_test, y_predicted))
|
|
||||||
print('Mean Squared Error : ', metrics.mean_squared_error(y_test, y_predicted))
|
|
||||||
print('Root Mean Squared Error : ', math.sqrt(metrics.mean_squared_error(y_test, y_predicted)))
|
|
||||||
|
|
||||||
print(test_results['usage_model'])
|
|
||||||
|
|
||||||
show_result(y_test, y_predicted)
|
|
||||||
|
|
||||||
#print('Training set size:')
|
|
||||||
#print(x_train.shape)
|
|
||||||
#print(y_train.shape)
|
|
||||||
#print('Testing set size:')
|
|
||||||
#print(x_test.shape)
|
|
||||||
#print(y_test.shape)
|
|
||||||
# print('Dev set size:')
|
|
||||||
# print(x_dev.shape)
|
|
||||||
# print(y_dev.shape)
|
|
||||||
|
|
||||||
# print(train_data.describe(include='all'))
|
|
||||||
# print(test_data.describe(include='all'))
|
|
||||||
# print(dev_data.describe(include='all'))
|
|
||||||
|
4
steel_industry_data_test.csv.dvc
Normal file
4
steel_industry_data_test.csv.dvc
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
outs:
|
||||||
|
- md5: ba702b5ad2647abad7f297449a6ca273
|
||||||
|
size: 252454
|
||||||
|
path: steel_industry_data_test.csv
|
4
steel_industry_data_train.csv.dvc
Normal file
4
steel_industry_data_train.csv.dvc
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
outs:
|
||||||
|
- md5: b9a05e4bc7ecf47bc3fb5ca7d92fd9fa
|
||||||
|
size: 2021682
|
||||||
|
path: steel_industry_data_train.csv
|
Loading…
Reference in New Issue
Block a user