challenging-america-word-ga.../model.py

85 lines
2.9 KiB
Python
Raw Normal View History

2022-03-26 19:08:19 +01:00
import lzma
from nltk.tokenize import word_tokenize
2022-04-02 22:23:56 +02:00
from nltk import trigrams
import string
from collections import defaultdict, Counter
trigrams_list = []
model = defaultdict(lambda: defaultdict(lambda: 0))
2022-03-26 19:08:19 +01:00
2022-04-02 22:23:56 +02:00
def preprocess(text):
_text = text.lower().replace('\\n', ' ').strip()
for character in _text:
if character not in string.ascii_lowercase + ' ':
_text = _text.replace(character, '')
2022-04-03 01:24:36 +02:00
words = word_tokenize(_text)
if len(words):
return words
return ['']
2022-03-26 19:08:19 +01:00
2022-04-02 22:23:56 +02:00
def predict(word_before, word_after):
2022-04-03 01:09:06 +02:00
prob_list = model[(word_before, word_after)].items()
predictions = []
total = 0.0
for key, value in prob_list:
total += value
predictions.append(f'{key}:{value}')
if total == 0.0:
return 'the:1.0'
return ' '.join(predictions)
2022-03-26 19:08:19 +01:00
2022-04-02 22:23:56 +02:00
with open('train/in.tsv', 'w', encoding='utf-8') as file:
2022-04-03 01:09:06 +02:00
print('dekompresja pliku')
2022-04-02 22:23:56 +02:00
text = lzma.open('train/in.tsv.xz').read().decode('utf-8')
2022-03-26 19:08:19 +01:00
file.write(text)
2022-04-02 22:23:56 +02:00
with open('train/in.tsv', encoding='utf-8') as file_in, open('train/expected.tsv', encoding='utf-8') as file_expected:
for index, (line_in, expected) in enumerate(zip(file_in, file_expected)):
if index % 1000 == 0:
2022-04-03 01:09:06 +02:00
print('zbieranie trigramów', index)
2022-04-02 22:23:56 +02:00
_, _, _, _, _, _, before, after = line_in.split('\t')
before, expected, after = preprocess(before), preprocess(expected), preprocess(after)
words = before + expected + after
trigrams_list += trigrams(words, pad_right=True, pad_left=True)
2022-04-03 01:24:36 +02:00
length = len(trigrams_list)
print('zbieranie trigramów:', length)
if length > 1000000:
break
2022-04-02 22:23:56 +02:00
2022-04-03 01:09:06 +02:00
for index, trigram in enumerate(trigrams_list):
if index % 100000 == 0:
2022-04-03 01:24:36 +02:00
print('uczenie modelu', index)
2022-04-02 22:23:56 +02:00
if not trigram[0] or not trigram[1] or not trigram[2]:
continue
model[(trigram[0], trigram[2])][trigram[1]] += 1
2022-04-03 01:09:06 +02:00
if index == 999999:
break
2022-04-02 22:23:56 +02:00
2022-04-03 01:09:06 +02:00
for index, words_1_3 in enumerate(model):
if index % 100000 == 0:
print('normalizacja', index)
2022-04-02 22:23:56 +02:00
count = sum(model[words_1_3].values())
for word_2 in model[words_1_3]:
model[words_1_3][word_2] /= float(count)
with open('test-A/in.tsv', encoding='utf-8') as file_in, open('test-A/out.tsv', 'w', encoding='utf-8') as file_out:
2022-04-03 01:24:36 +02:00
print('zapisywanie test-A')
for line_in in file_in:
_, _, _, _, _, _, before, after = line_in.split('\t')
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
file_out.write(predict(word_before_in, word_after_in) + '\n')
with open('dev-0/in.tsv', encoding='utf-8') as file_in, open('dev-0/out.tsv', 'w', encoding='utf-8') as file_out:
print('zapisywanie dev-0')
2022-03-26 19:08:19 +01:00
for line_in in file_in:
_, _, _, _, _, _, before, after = line_in.split('\t')
2022-04-02 22:23:56 +02:00
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
file_out.write(predict(word_before_in, word_after_in) + '\n')
2022-04-03 01:09:06 +02:00
print('koniec')