diff --git a/run.py b/run.py index e447d1b..7785cba 100644 --- a/run.py +++ b/run.py @@ -4,72 +4,77 @@ from collections import defaultdict, Counter import pandas as pd import csv import regex as re +import sys DEFAULT_PREDICTION = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1' - def preprocess(text): text = text.lower().replace('-\\n', '').replace('\\n', ' ') return re.sub(r'\p{P}', '', text) -def predict(word_before, word_after): - prediction = dict(Counter(dict(model[word_before, word_after])).most_common(6)) - result = [] - prob = 0.0 - for key, value in prediction.items(): - prob += value - result.append(f'{key}:{value}') - if prob == 0.0: - return DEFAULT_PREDICTION - result.append(f':{max(1 - prob, 0.01)}') - return ' '.join(result) + +class Model(): + def __init__(self, alpha, train_file_name, test_file_name): + + file_expected = pd.read_csv(f'{train_file_name}/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000) + file_in = pd.read_csv(f'{train_file_name}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000) + file_in = file_in[[6, 7]] + file_concat = pd.concat([file_in, file_expected], axis=1) + file_concat['text'] = file_concat[6] + file_concat[0] + file_concat[7] + + self.file = file_concat[['text']] + self.test_file_name = test_file_name + self.alpha = alpha; + self.model = defaultdict(lambda: defaultdict(lambda: 0)) + + def train(self): + rows = self.file.iterrows() + rows_len = len(self.file) + for index, (_, row) in enumerate(rows): + if index % 1000 == 0: + print(f'uczenie modelu: {index / rows_len}') + words = word_tokenize(preprocess(str(row['text']))) + for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True): + if word_1 and word_2 and word_3: + self.model[(word_1, word_3)][word_2] += 1 + model_len = len(self.model) + for index, words_1_3 in enumerate(self.model): + if index % 100000 == 0: + print(f'normalizacja i wygładzanie: {index / model_len}') + occurrences = sum(self.model[words_1_3].values()) + for word_2 in self.model[words_1_3]: + self.model[words_1_3][word_2] += self.alpha + self.model[words_1_3][word_2] /= float(occurrences + self.alpha + len(word_2)) + + def predict_row(self, word_before, word_after): + prediction = dict(Counter(dict(self.model[word_before, word_after])).most_common(6)) + result = [] + prob = 0.0 + for key, value in prediction.items(): + prob += value + result.append(f'{key}:{value}') + if prob == 0.0: + return DEFAULT_PREDICTION + result.append(f':{max(1 - prob, 0.01)}') + return ' '.join(result) + + def predict(self): + data = pd.read_csv(f'{self.test_file_name}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) + with open(f'{self.test_file_name}/out.tsv', 'w', encoding='utf-8') as file_out: + for _, row in data.iterrows(): + words_before, words_after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7]))) + if len(words_before) < 3 or len(words_after) < 3: + prediction = DEFAULT_PREDICTION + else: + prediction = self.predict_row(words_before[-1], words_after[0]) + file_out.write(prediction + '\n') + -def make_prediction(file): - data = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) - with open(f'{file}/out.tsv', 'w', encoding='utf-8') as file_out: - for _, row in data.iterrows(): - words_before, words_after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7]))) - if len(words_before) < 3 or len(words_after) < 3: - prediction = DEFAULT_PREDICTION - else: - prediction = predict(words_before[-1], words_after[0]) - file_out.write(prediction + '\n') - - -file_in = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000) -file_expected = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000) -file_in = file_in[[6, 7]] -file_concat = pd.concat([file_in, file_expected], axis=1) -file_concat['text'] = file_concat[6] + file_concat[0] + file_concat[7] -file_concat = file_concat[['text']] -trigrams_list = [] -model = defaultdict(lambda: defaultdict(lambda: 0)) - -rows = file_concat.iterrows() -rows_len = len(file_concat) -for index, (_, row) in enumerate(rows): - if index % 1000 == 0: - print(f'uczenie modelu: {index / rows_len}') - words = word_tokenize(preprocess(str(row['text']))) - for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True): - if word_1 and word_2 and word_3: - model[(word_1, word_3)][word_2] += 1 - -alpha = 0.25 -model_len = len(model) -for index, words_1_3 in enumerate(model): - if index % 100000 == 0: - print(f'normalizacja: {index / model_len}') - occurrences = sum(model[words_1_3].values()) - for word_2 in model[words_1_3]: - model[words_1_3][word_2] += alpha - model[words_1_3][word_2] /= float(occurrences + alpha + len(word_2)) - - -make_prediction('test-A') -make_prediction('dev-0') - -print('koniec') +alpha = float(sys.argv[1]) +print(f'alfa: {alpha}') +model = Model(alpha, 'dev-0', 'test-A') +model.train() +model.predict()