This commit is contained in:
pietrzakkuba 2022-04-03 15:23:55 +02:00
parent 72a6d01284
commit a83a751185

View File

@ -6,6 +6,9 @@ import csv
import regex as re
DEFAULT_PREDICTION = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
def preprocess(text):
text = text.lower().replace('-\\n', '').replace('\\n', ' ')
return re.sub(r'\p{P}', '', text)
@ -13,15 +16,15 @@ def preprocess(text):
def predict(word_before, word_after):
prediction = dict(Counter(dict(model[word_before, word_after])).most_common(6))
result = ''
result = []
prob = 0.0
for key, value in prediction.items():
prob += value
result += f'{key}:{value} '
result.append(f'{key}:{value}')
if prob == 0.0:
return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
result += f':{max(1 - prob, 0.01)}'
return result
return DEFAULT_PREDICTION
result.append(f':{max(1 - prob, 0.01)}')
return ' '.join(result)
def make_prediction(file):
@ -30,39 +33,40 @@ def make_prediction(file):
for _, row in data.iterrows():
words_before, words_after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))
if len(words_before) < 3 or len(words_after) < 3:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
prediction = DEFAULT_PREDICTION
else:
prediction = predict(words_before[-1], words_after[0])
file_out.write(prediction + '\n')
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
train_data = train_data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data['line'] = train_data[6] + train_data[0] + train_data[7]
file_in = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
file_expected = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
file_in = file_in[[6, 7]]
file_concat = pd.concat([file_in, file_expected], axis=1)
file_concat['text'] = file_concat[6] + file_concat[0] + file_concat[7]
file_concat = file_concat[['text']]
trigrams_list = []
model = defaultdict(lambda: defaultdict(lambda: 0))
rows = train_data.iterrows()
rows_len = len(train_data)
rows = file_concat.iterrows()
rows_len = len(file_concat)
for index, (_, row) in enumerate(rows):
if index % 1000 == 0:
print(f'uczenie modelu: {index / rows_len}')
text = preprocess(str(row['line']))
words = word_tokenize(text)
words = word_tokenize(preprocess(str(row['text'])))
for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True):
if word_1 and word_2 and word_3:
model[(word_1, word_3)][word_2] += 1
alpha = 0.25
model_len = len(model)
for index, words_1_3 in enumerate(model):
if index % 100000 == 0:
print(f'normalizacja: {index / model_len}')
count = sum(model[words_1_3].values())
occurences = sum(model[words_1_3].values())
for word_2 in model[words_1_3]:
model[words_1_3][word_2] += 0.25
model[words_1_3][word_2] /= float(count + 0.25 + len(word_2))
model[words_1_3][word_2] += alpha
model[words_1_3][word_2] /= float(occurences + alpha + len(word_2))
make_prediction('test-A')