test 7 version

This commit is contained in:
pietrzakkuba 2022-04-03 13:29:26 +02:00
parent c65a03a0ad
commit bf943014f3
3 changed files with 17969 additions and 17966 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,9 @@
import lzma
from nltk.tokenize import word_tokenize from nltk.tokenize import word_tokenize
from nltk import trigrams from nltk import trigrams
import string import string
from collections import defaultdict, Counter from collections import defaultdict, Counter
import pandas as pd
import csv
trigrams_list = [] trigrams_list = []
@ -10,7 +11,8 @@ model = defaultdict(lambda: defaultdict(lambda: 0))
def preprocess(text): def preprocess(text):
_text = text.lower().replace('\\n', ' ').strip() _text = str(text)
_text = _text.lower().replace("-\\n", "").replace('\\n', ' ').strip()
for character in _text: for character in _text:
if character not in string.ascii_lowercase + ' ': if character not in string.ascii_lowercase + ' ':
_text = _text.replace(character, '') _text = _text.replace(character, '')
@ -21,7 +23,6 @@ def preprocess(text):
def predict(word_before, word_after): def predict(word_before, word_after):
return 'the:1.0'
prob_list = dict(Counter(model[(word_before, word_after)]).most_common(5)).items() prob_list = dict(Counter(model[(word_before, word_after)]).most_common(5)).items()
predictions = [] predictions = []
prob_sum = 0.0 prob_sum = 0.0
@ -31,56 +32,58 @@ def predict(word_before, word_after):
if prob_sum == 0.0: if prob_sum == 0.0:
return 'the:0:2 be:0.2 to:0.2 of:0.15 and:0.15 :0.1' return 'the:0:2 be:0.2 to:0.2 of:0.15 and:0.15 :0.1'
elif prob_sum < 1.0: elif prob_sum < 1.0:
predictions.append(f':{1.0 - prob_sum}') predictions.append(f':{max(1 - prob_sum, 0.01)}')
return ' '.join(predictions) return ' '.join(predictions)
with open('train/in.tsv', 'w', encoding='utf-8') as file: file_in = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
print('dekompresja pliku') file_expected = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
text = lzma.open('train/in.tsv.xz').read().decode('utf-8')
file.write(text)
with open('train/in.tsv', encoding='utf-8') as file_in, open('train/expected.tsv', encoding='utf-8') as file_expected: for index, (line_in, expected) in enumerate(zip(file_in.iterrows(), file_expected.iterrows())):
for index, (line_in, expected) in enumerate(zip(file_in, file_expected)): if index % 1000 == 0:
if index % 1000 == 0: print('zbieranie trigramów', index)
print('zbieranie trigramów', index) before = line_in[1][6]
_, _, _, _, _, _, before, after = line_in.split('\t') after = line_in[1][7]
before, expected, after = preprocess(before), preprocess(expected), preprocess(after) expected = expected[1][0]
words = before + expected + after before, expected, after = preprocess(before), preprocess(expected), preprocess(after)
trigrams_list += trigrams(words, pad_right=True, pad_left=True) words = before + expected + after
length = len(trigrams_list) trigrams_list += trigrams(words, pad_right=True, pad_left=True)
print('zbieranie trigramów:', length) length = len(trigrams_list)
if length > 1000000:
break trigrams_len = len(trigrams_list)
for index, trigram in enumerate(trigrams_list): for index, trigram in enumerate(trigrams_list):
if index % 100000 == 0: if index % 100000 == 0:
print('uczenie modelu', index) print(f'uczenie modelu: {index / trigrams_len}')
if not trigram[0] or not trigram[1] or not trigram[2]: if trigram[0] and trigram[1] and trigram[2]:
continue model[(trigram[0], trigram[2])][trigram[1]] += 1
model[(trigram[0], trigram[2])][trigram[1]] += 1
if index == 999999:
break
model_len = len(model)
for index, words_1_3 in enumerate(model): for index, words_1_3 in enumerate(model):
if index % 100000 == 0: if index % 100000 == 0:
print('normalizacja', index) print(f'normalizacja: {index / model_len}')
count = sum(model[words_1_3].values()) count = sum(model[words_1_3].values())
for word_2 in model[words_1_3]: for word_2 in model[words_1_3]:
model[words_1_3][word_2] /= float(count) model[words_1_3][word_2] /= float(count)
with open('test-A/in.tsv', encoding='utf-8') as file_in, open('test-A/out.tsv', 'w', encoding='utf-8') as file_out: file_in = pd.read_csv('test-A/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open('test-A/out.tsv', 'w', encoding='utf-8') as file_out:
print('zapisywanie test-A') print('zapisywanie test-A')
for line_in in file_in: for line_in in file_in.iterrows():
_, _, _, _, _, _, before, after = line_in.split('\t') before = line_in[1][6]
after = line_in[1][7]
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0] word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
file_out.write(predict(word_before_in, word_after_in) + '\n') file_out.write(predict(word_before_in, word_after_in) + '\n')
with open('dev-0/in.tsv', encoding='utf-8') as file_in, open('dev-0/out.tsv', 'w', encoding='utf-8') as file_out:
file_in = pd.read_csv('dev-0/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open('dev-0/out.tsv', 'w', encoding='utf-8') as file_out:
print('zapisywanie dev-0') print('zapisywanie dev-0')
for line_in in file_in: for line_in in file_in.iterrows():
_, _, _, _, _, _, before, after = line_in.split('\t') before = line_in[1][6]
after = line_in[1][7]
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0] word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
file_out.write(predict(word_before_in, word_after_in) + '\n') file_out.write(predict(word_before_in, word_after_in) + '\n')

File diff suppressed because it is too large Load Diff