test 8 version

This commit is contained in:
pietrzakkuba 2022-04-03 13:53:56 +02:00
parent bf943014f3
commit c02c81943b
3 changed files with 15381 additions and 15384 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,9 @@
from nltk.tokenize import word_tokenize
from nltk import trigrams
import string
from collections import defaultdict, Counter
import pandas as pd
import csv
import regex as re
trigrams_list = []
@ -11,12 +11,9 @@ model = defaultdict(lambda: defaultdict(lambda: 0))
def preprocess(text):
_text = str(text)
_text = _text.lower().replace("-\\n", "").replace('\\n', ' ').strip()
for character in _text:
if character not in string.ascii_lowercase + ' ':
_text = _text.replace(character, '')
words = word_tokenize(_text)
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
text = re.sub(r'\p{P}', '', text)
words = word_tokenize(text)
if len(words):
return words
return ['']
@ -30,7 +27,7 @@ def predict(word_before, word_after):
prob_sum += value
predictions.append(f'{key}:{value}')
if prob_sum == 0.0:
return 'the:0:2 be:0.2 to:0.2 of:0.15 and:0.15 :0.1'
return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
elif prob_sum < 1.0:
predictions.append(f':{max(1 - prob_sum, 0.01)}')
return ' '.join(predictions)
@ -68,23 +65,23 @@ for index, words_1_3 in enumerate(model):
for word_2 in model[words_1_3]:
model[words_1_3][word_2] /= float(count)
file_in = pd.read_csv('test-A/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open('test-A/out.tsv', 'w', encoding='utf-8') as file_out:
print('zapisywanie test-A')
def make_prediction(file):
file_in = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open(f'{file}/out.tsv', 'w') as file_out:
print(f'zapisywanie {file}')
for line_in in file_in.iterrows():
before = line_in[1][6]
after = line_in[1][7]
if len(before) < 3 or len(after) < 3:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
file_out.write(predict(word_before_in, word_after_in) + '\n')
prediction = predict(word_before_in, word_after_in)
file_out.write(prediction + '\n')
file_in = pd.read_csv('dev-0/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open('dev-0/out.tsv', 'w', encoding='utf-8') as file_out:
print('zapisywanie dev-0')
for line_in in file_in.iterrows():
before = line_in[1][6]
after = line_in[1][7]
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
file_out.write(predict(word_before_in, word_after_in) + '\n')
make_prediction('test-A')
make_prediction('dev-0')
print('koniec')

File diff suppressed because it is too large Load Diff