from nltk.tokenize import word_tokenize from nltk import trigrams import string from collections import defaultdict, Counter import pandas as pd import csv trigrams_list = [] model = defaultdict(lambda: defaultdict(lambda: 0)) def preprocess(text): _text = str(text) _text = _text.lower().replace("-\\n", "").replace('\\n', ' ').strip() for character in _text: if character not in string.ascii_lowercase + ' ': _text = _text.replace(character, '') words = word_tokenize(_text) if len(words): return words return [''] def predict(word_before, word_after): prob_list = dict(Counter(model[(word_before, word_after)]).most_common(5)).items() predictions = [] prob_sum = 0.0 for key, value in prob_list: prob_sum += value predictions.append(f'{key}:{value}') if prob_sum == 0.0: return 'the:0:2 be:0.2 to:0.2 of:0.15 and:0.15 :0.1' elif prob_sum < 1.0: predictions.append(f':{max(1 - prob_sum, 0.01)}') return ' '.join(predictions) file_in = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000) file_expected = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000) for index, (line_in, expected) in enumerate(zip(file_in.iterrows(), file_expected.iterrows())): if index % 1000 == 0: print('zbieranie trigramów', index) before = line_in[1][6] after = line_in[1][7] expected = expected[1][0] before, expected, after = preprocess(before), preprocess(expected), preprocess(after) words = before + expected + after trigrams_list += trigrams(words, pad_right=True, pad_left=True) length = len(trigrams_list) trigrams_len = len(trigrams_list) for index, trigram in enumerate(trigrams_list): if index % 100000 == 0: print(f'uczenie modelu: {index / trigrams_len}') if trigram[0] and trigram[1] and trigram[2]: model[(trigram[0], trigram[2])][trigram[1]] += 1 model_len = len(model) for index, words_1_3 in enumerate(model): if index % 100000 == 0: print(f'normalizacja: {index / model_len}') count = sum(model[words_1_3].values()) for word_2 in model[words_1_3]: model[words_1_3][word_2] /= float(count) file_in = pd.read_csv('test-A/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) with open('test-A/out.tsv', 'w', encoding='utf-8') as file_out: print('zapisywanie test-A') for line_in in file_in.iterrows(): before = line_in[1][6] after = line_in[1][7] word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0] file_out.write(predict(word_before_in, word_after_in) + '\n') file_in = pd.read_csv('dev-0/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) with open('dev-0/out.tsv', 'w', encoding='utf-8') as file_out: print('zapisywanie dev-0') for line_in in file_in.iterrows(): before = line_in[1][6] after = line_in[1][7] word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0] file_out.write(predict(word_before_in, word_after_in) + '\n') print('koniec')