challenging-america-word-ga.../model.py
2022-04-03 14:14:56 +02:00

89 lines
3.0 KiB
Python

from nltk.tokenize import word_tokenize
from nltk import trigrams
from collections import defaultdict, Counter
import pandas as pd
import csv
import regex as re
trigrams_list = []
model = defaultdict(lambda: defaultdict(lambda: 0))
def preprocess(text):
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
text = re.sub(r'\p{P}', '', text)
words = word_tokenize(text)
if len(words):
return words
return ['']
def predict(word_before, word_after):
prob_list = dict(Counter(model[(word_before, word_after)]).most_common(5)).items()
predictions = []
prob_sum = 0.0
for key, value in prob_list:
prob_sum += value
predictions.append(f'{key}:{value}')
if prob_sum == 0.0:
return 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
elif prob_sum < 1.0:
predictions.append(f':{max(1 - prob_sum, 0.01)}')
return ' '.join(predictions)
file_in = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
file_expected = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=200000)
for index, (line_in, expected) in enumerate(zip(file_in.iterrows(), file_expected.iterrows())):
if index % 1000 == 0:
print('zbieranie trigramów', index)
before = line_in[1][6]
after = line_in[1][7]
expected = expected[1][0]
before, expected, after = preprocess(before), preprocess(expected), preprocess(after)
words = before + expected + after
trigrams_list += trigrams(words, pad_right=True, pad_left=True)
length = len(trigrams_list)
trigrams_len = len(trigrams_list)
for index, trigram in enumerate(trigrams_list):
if index % 100000 == 0:
print(f'uczenie modelu: {index / trigrams_len}')
if trigram[0] and trigram[1] and trigram[2]:
model[(trigram[0], trigram[2])][trigram[1]] += 1
model_len = len(model)
for index, words_1_3 in enumerate(model):
if index % 100000 == 0:
print(f'normalizacja: {index / model_len}')
count = sum(model[words_1_3].values())
for word_2 in model[words_1_3]:
model[words_1_3][word_2] += 1
model[words_1_3][word_2] /= float(count + len(word_2)))
def make_prediction(file):
file_in = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open(f'{file}/out.tsv', 'w', encoding='utf-8') as file_out:
print(f'zapisywanie {file}')
for line_in in file_in.iterrows():
before = line_in[1][6]
after = line_in[1][7]
if len(before) < 3 or len(after) < 3:
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
word_before_in, word_after_in = preprocess(before)[-1], preprocess(after)[0]
prediction = predict(word_before_in, word_after_in)
file_out.write(prediction + '\n')
make_prediction('test-A')
make_prediction('dev-0')
print('koniec')