2021-05-30 12:55:49 +02:00
|
|
|
from typing import get_args
|
2021-04-25 23:17:14 +02:00
|
|
|
from UserActType import UserActType
|
|
|
|
from UserAct import UserAct
|
2021-05-30 12:55:49 +02:00
|
|
|
from flair.data import Sentence, Token
|
|
|
|
from flair.datasets import SentenceDataset
|
|
|
|
from flair.models import SequenceTagger
|
2021-04-25 23:17:14 +02:00
|
|
|
|
|
|
|
|
|
|
|
class NLU:
|
|
|
|
def __init__(self):
|
2021-05-30 12:55:49 +02:00
|
|
|
self.frame_model = SequenceTagger.load('frame-model/final-model.pt')
|
|
|
|
self.slot_model = SequenceTagger.load('slot-model/final-model.pt')
|
2021-05-16 16:56:37 +02:00
|
|
|
|
2021-05-30 12:55:49 +02:00
|
|
|
def conllu2flair(self, sentences, label=None):
|
|
|
|
fsentences = []
|
|
|
|
for sentence in sentences:
|
|
|
|
fsentence = Sentence()
|
|
|
|
for token in sentence:
|
|
|
|
ftoken = Token(token['form'])
|
|
|
|
if label:
|
|
|
|
ftoken.add_tag(label, token[label])
|
|
|
|
fsentence.add_token(ftoken)
|
|
|
|
fsentences.append(fsentence)
|
|
|
|
return SentenceDataset(fsentences)
|
2021-05-16 16:56:37 +02:00
|
|
|
|
2021-05-30 12:55:49 +02:00
|
|
|
def get_act_type_from_intent(self, intent):
|
|
|
|
if 'inform' in intent:
|
|
|
|
return UserActType.INFORM
|
|
|
|
elif 'meeting' in intent:
|
|
|
|
if 'create' in intent:
|
|
|
|
return UserActType.CREATE_MEETING
|
|
|
|
elif 'update' in intent:
|
|
|
|
return UserActType.UPDATE_MEETING
|
|
|
|
elif 'cancel' in intent:
|
|
|
|
return UserActType.CANCEL_MEETING
|
|
|
|
elif 'list' in intent:
|
|
|
|
return UserActType.MEETING_LIST
|
|
|
|
elif 'free_time' in intent:
|
|
|
|
return UserActType.FREE_TIME
|
|
|
|
elif 'hello' in intent:
|
|
|
|
return UserActType.HELLO
|
|
|
|
elif 'bye' in intent:
|
|
|
|
return UserActType.BYE
|
|
|
|
elif 'confirm' in intent:
|
|
|
|
return UserActType.CONFIRM
|
|
|
|
elif 'negate' in intent:
|
|
|
|
return UserActType.NEGATE
|
|
|
|
elif 'thankyou' in intent:
|
|
|
|
return UserActType.THANKYOU
|
|
|
|
else:
|
|
|
|
return UserActType.INVALID
|
2021-05-16 16:56:37 +02:00
|
|
|
|
2021-05-30 12:55:49 +02:00
|
|
|
def get_slots(self, slots):
|
|
|
|
arguments = []
|
|
|
|
candidate = None
|
|
|
|
for slot in slots:
|
|
|
|
if slot[1].startswith("B-"):
|
|
|
|
if(candidate != None):
|
|
|
|
arguments.append(candidate)
|
|
|
|
candidate = [slot[1].replace("B-", ""), slot[0]]
|
|
|
|
if slot[1].startswith("I-") and candidate != None and slot[1].endswith(candidate[0]):
|
|
|
|
candidate[1] += " " + slot[0]
|
|
|
|
if(candidate != None):
|
|
|
|
arguments.append(candidate)
|
|
|
|
temp_slots = [(x[0], x[1]) for x in arguments]
|
|
|
|
final_slots = []
|
|
|
|
description_slot = ''
|
|
|
|
place_slot = ''
|
|
|
|
for slot in temp_slots:
|
|
|
|
if slot[0] == 'description':
|
|
|
|
if description_slot != '':
|
|
|
|
description_slot += ' '
|
|
|
|
description_slot += slot[1]
|
|
|
|
elif slot[0] == 'place':
|
|
|
|
if place_slot != '':
|
|
|
|
place_slot += ' '
|
|
|
|
place_slot += slot[1]
|
|
|
|
elif slot[0] == 'date':
|
|
|
|
slot_value = slot[1].casefold()
|
|
|
|
if len(slot_value) > 3:
|
|
|
|
final_slots.append(('date', slot_value.strip('.')))
|
|
|
|
elif slot[0] == 'time':
|
|
|
|
numeric = False
|
|
|
|
for char in slot[1]:
|
|
|
|
if char.isdigit():
|
|
|
|
numeric = True
|
|
|
|
if numeric:
|
|
|
|
final_slots.append(('time', slot[1].strip('.')))
|
|
|
|
elif slot[0] == 'participant':
|
|
|
|
if len(slot[1]) > 3:
|
|
|
|
final_slots.append(('participant', slot[1].strip('.')))
|
|
|
|
else:
|
|
|
|
final_slots.append(slot)
|
|
|
|
if description_slot != '':
|
|
|
|
final_slots.append(('description', description_slot.strip('.')))
|
|
|
|
if place_slot != '':
|
|
|
|
final_slots.append(('place', place_slot.strip('.')))
|
|
|
|
return final_slots
|
|
|
|
|
|
|
|
def analyse_user_input(self, text):
|
|
|
|
sentence = text.translate(str.maketrans('', '', '!"#$%&\'()*+,/;<=>?@[\]^_`{|}~'))
|
|
|
|
sentence = sentence.strip('.')
|
|
|
|
csentence = [{'form': word} for word in sentence.split()]
|
|
|
|
fsentence = self.conllu2flair([csentence])[0]
|
|
|
|
self.frame_model.predict(fsentence)
|
|
|
|
self.slot_model.predict(fsentence)
|
|
|
|
possible_intents = {}
|
|
|
|
for token in fsentence:
|
|
|
|
for intent in token.annotation_layers["frame"]:
|
|
|
|
if(intent.value in possible_intents):
|
|
|
|
possible_intents[intent.value] += intent.score
|
|
|
|
else:
|
|
|
|
possible_intents[intent.value] = intent.score
|
|
|
|
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence.split(), fsentence) if ftoken.get_tag('slot').value != 'O'], max(possible_intents)
|
2021-05-16 16:56:37 +02:00
|
|
|
|
2021-05-30 12:55:49 +02:00
|
|
|
def get_user_act(self, analysis):
|
|
|
|
slots = analysis[0]
|
|
|
|
intent = analysis[1]
|
|
|
|
act_type = self.get_act_type_from_intent(intent)
|
|
|
|
slots = self.get_slots(slots)
|
|
|
|
return UserAct(act_type, slots)
|
2021-04-25 23:17:14 +02:00
|
|
|
|
2021-05-16 16:56:37 +02:00
|
|
|
def parse_user_input(self, text: str) -> UserAct:
|
2021-05-30 12:55:49 +02:00
|
|
|
analysis = self.analyse_user_input(text)
|
|
|
|
return self.get_user_act(analysis)
|