186 lines
5.4 KiB
Python
186 lines
5.4 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# In[2]:
|
|
|
|
|
|
from itertools import islice
|
|
import regex as re
|
|
import sys
|
|
from torchtext.vocab import build_vocab_from_iterator
|
|
import pandas as pd
|
|
from torch import nn
|
|
import torch
|
|
from torch.utils.data import IterableDataset
|
|
import itertools
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data import DataLoader
|
|
import csv
|
|
from tqdm import tqdm
|
|
from nltk import trigrams, word_tokenize
|
|
|
|
VOCAB_SIZE = 20000
|
|
EMBED_SIZE = 100
|
|
CONTEXT_SIZE = 2
|
|
# hidden units
|
|
H = 100
|
|
|
|
def get_words_from_line(line):
|
|
line = clean(line)
|
|
line = line.rstrip()
|
|
yield '<s>'
|
|
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
|
yield m.group(0).lower()
|
|
yield '</s>'
|
|
|
|
|
|
def get_word_lines_from_file(file_name):
|
|
with open(file_name, 'r') as fh:
|
|
for line in fh:
|
|
yield get_words_from_line(line)
|
|
|
|
def clean(text):
|
|
text = str(text).lower().replace("-\\n", "").replace("\\n", " ")
|
|
return re.sub(r"\p{P}", "", text)
|
|
|
|
vocab = build_vocab_from_iterator(
|
|
get_word_lines_from_file('train-300k.txt'),
|
|
max_tokens = VOCAB_SIZE,
|
|
specials = ['<unk>'])
|
|
|
|
!shuf < train-300k.txt > train-300k.shuf.txt
|
|
|
|
class SimpleTrigramNeuralLanguageModel(nn.Module):
|
|
def __init__(self, vocabulary_size, embedding_size, context_size, h):
|
|
super(SimpleTrigramNeuralLanguageModel, self).__init__()
|
|
self.context_size = context_size
|
|
self.embedding_size = embedding_size
|
|
self.embeddings = nn.Embedding(vocabulary_size, embedding_size)
|
|
self.linear1 = nn.Linear(context_size * embedding_size, h)
|
|
self.linear2 = nn.Linear(h, vocabulary_size, bias = False)
|
|
self.softmax = nn.Softmax()
|
|
|
|
def forward(self, x):
|
|
embeds = self.embeddings(x).view((-1,self.context_size * self.embedding_size))
|
|
out = torch.tanh(self.linear1(embeds))
|
|
out = self.linear2(out)
|
|
log_probs = self.softmax(out)
|
|
return log_probs
|
|
|
|
|
|
def look_ahead_iterator(gen):
|
|
prev_1 = None
|
|
prev_2 = None
|
|
for item in gen:
|
|
if prev_1 is not None and prev_2 is not None:
|
|
yield (prev_1, prev_2, item)
|
|
if prev_1 is None:
|
|
prev_1 = item
|
|
elif prev_2 is None:
|
|
prev_2 = item
|
|
|
|
class Trigrams(IterableDataset):
|
|
def __init__(self, text_file, vocabulary_size):
|
|
self.vocab = build_vocab_from_iterator(
|
|
get_word_lines_from_file(text_file),
|
|
max_tokens = vocabulary_size,
|
|
specials = ['<unk>'])
|
|
self.vocab.set_default_index(self.vocab['<unk>'])
|
|
self.vocabulary_size = vocabulary_size
|
|
self.text_file = text_file
|
|
|
|
def __iter__(self):
|
|
return look_ahead_iterator((self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
|
|
|
model = SimpleTrigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE, CONTEXT_SIZE, H)
|
|
|
|
vocab.set_default_index(vocab['<unk>'])
|
|
|
|
# def decrease_train_set_size(lines_amount):
|
|
# lines = []
|
|
# with open('train.txt', 'r') as fh:
|
|
# for line in fh:
|
|
# lines.append(line)
|
|
# lines_amount -= 1
|
|
# if(lines_amount == 0):
|
|
# break
|
|
# with open('train-300k.txt', 'w') as fh:
|
|
# for line in lines:
|
|
# fh.write(line)
|
|
# fh.write('\n')
|
|
|
|
# decrease_train_set_size(300000)
|
|
|
|
train_dataset = Trigrams('train-300k.shuf.txt', VOCAB_SIZE)
|
|
|
|
device = 'cpu'
|
|
model = SimpleTrigramNeuralLanguageModel(VOCAB_SIZE, EMBED_SIZE, CONTEXT_SIZE, H).to(device)
|
|
data = DataLoader(train_dataset, batch_size=5000)
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
criterion = torch.nn.NLLLoss()
|
|
|
|
model.train()
|
|
step = 0
|
|
for x1, x2, y in data:
|
|
x = torch.stack((x1,x2), 0)
|
|
x = x.to(device)
|
|
y = y.to(device)
|
|
optimizer.zero_grad()
|
|
ypredicted = model(x)
|
|
loss = criterion(torch.log(ypredicted), y)
|
|
if step % 100 == 0:
|
|
print(step, loss)
|
|
step += 1
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
torch.save(model.state_dict(), 'model1.bin')
|
|
|
|
print(model)
|
|
|
|
def predict(words):
|
|
vocab = train_dataset.vocab
|
|
ixs = torch.tensor(vocab.forward(words)).to(device)
|
|
|
|
predictions = model(ixs)
|
|
top_predictions = torch.topk(predictions[0], 5)
|
|
top_indices = top_predictions.indices.tolist()
|
|
top_probs = top_predictions.values.tolist()
|
|
top_words = vocab.lookup_tokens(top_indices)
|
|
result_list = list(zip(top_words, top_probs))
|
|
|
|
total_prob = 0.0
|
|
str_prediction = ""
|
|
|
|
for word, prob in result_list:
|
|
total_prob += prob
|
|
str_prediction += f"{word}:{prob} "
|
|
|
|
if not total_prob:
|
|
return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
|
|
|
if 1 - total_prob >= 0.01:
|
|
str_prediction += f":{1-total_prob}"
|
|
else:
|
|
str_prediction += f":0.01"
|
|
return str_prediction
|
|
|
|
def predict_data(read_path, save_path):
|
|
data = pd.read_csv(
|
|
read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE
|
|
)
|
|
with open(save_path, "w", encoding="utf-8") as file:
|
|
for _, row in tqdm(data.iterrows()):
|
|
words = word_tokenize(clean(row[6]))
|
|
if len(words) < 3:
|
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
|
else:
|
|
prediction = predict(words[-2:])
|
|
file.write(prediction + "\n")
|
|
|
|
print("Predicting...")
|
|
print("Dev set")
|
|
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
|
|
|
print("Test set")
|
|
predict_data("test-A/in.tsv.xz", "test-A/out.tsv") |